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Inverse scattering transform for the Gerdjikov—Ivanov equation with nonzero boundary
conditions
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Abstract. In this article, we focus on the inverse scattering transform for the Gerdjikov—Ivanov equation with nonzero
boundary at infinity. An appropriate two-sheeted Riemann surface is introduced to map the original spectral parameter
k into a single-valued parameter z. Based on the Lax pair of the Gerdjikov—Ivanov equation, we derive its Jost solutions
with nonzero boundary. Further asymptotic behaviors, analyticity and the symmetries of the Jost solutions and the spectral
matrix are in detail derived. The formula of N-soliton solutions is obtained via transforming the problem of nonzero
boundary into the corresponding matrix Riemann-Hilbert problem. As examples of N-soliton formula, for N = 1 and
N = 2, respectively, different kinds of soliton solutions and breather solutions are explicitly presented according to different
distributions of the spectrum. The dynamical features of those solutions are characterized in the particular case with a
quartet of discrete eigenvalues. It is shown that distribution of the spectrum and non-vanishing boundary also affect feature
of soliton solutions.
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1. Introduction

It is well known that the nonlinear Schrédinger (NLS) equation [1,2]

ig: + quw + 2/g[*q¢ = 0, (1.1)
which is one of the most important integrable systems in the soliton theory, plays an important role
and has applications in a wide variety of fields. Besides the NLS equation (1.1), derivative NLS (DNLS)
equations were also introduced to investigate the effects of high-order perturbations [3-5]. Among them,

there are three deformations of the derivative NLS equations [5]: The first one is Kaup—Newell equation
(also called DNLSI equation) [6]

The second type is the Chen—Lee-Liu equation (also called DNLSII equation) [7]

The third type is the Gerdjikov—Ivanov (GI) equation (also called DNLSIII equation) which takes the
form [8]

i+ Gea — 0”4} + 50°¢7 =0, (1.4)
where the asterisk * means the complex conjugation. It has been discovered that the three kinds of
DNLS equations can be transformed into each another via the gauge transformations [3,4]. The DNLS
equations are regarded as models in a wide variety of fields such as weakly nonlinear dispersive water
waves, nonlinear optical fibers, quantum field theory and plasmas [9-12]. In plasma physics, the GI
equation (1.4) is a model for Alfvén waves propagating parallel to the ambient magnetic field, with ¢ being

 Birkhiuser
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the transverse magnetic field perturbation and x and t being space and time coordinates, respectively
[13,14].

Though there are gauge transformations among the three DNLS equations, such relations turn out
to be rather complicated and implicit, which is difficult to apply them to study initial-value problem
with nonzero boundary. In this paper, we present a direct approach to the initial-value problem of GI
equation via inverse scattering transformation. The GI equation has been studied through many methods,
for instance the Darboux transformation [15], the nonlinearization [16,17], the similarity reduction, the
bifurcation theory, and others [18,19]. In particular, Riemann—Hilbert method is used to construct N-
soliton of the GI equation with zero boundary [20]. However, to our knowledge, there is still no work
on GI equation (1.4) with nonzero boundary by using inverse scattering transform or Riemann—Hilbert
approach. In this article, we investigate the soliton solution of GI equation (1.4) with the following nonzero
boundary:

g(@,t) ~ que” FOIHIGT g oo, (L.5)

where |g+| = g0 > 0, and ¢+ are independent of x,¢.

It must be admitted that the inverse scattering transform method plays a significant role during the
discovery process of the exact solutions of completely integrable systems [21,22]. As a new version of
inverse scattering transform method, the Riemann—Hilbert approach has become the preferred research
technique to the researchers in investigating the soliton solutions and the long-time asymptotics of inte-
grable systems in recent years [23,24]. More recently, the Riemann—Hilbert approach has become a hot
spot to investigate the integrable systems with nonzero boundary [25-29].

This paper is organized as follows: In Sect. 2, we get down to the spectral analysis by introducing an
appropriate transformation. Then, we introduce the two-sheeted Riemann surface for uniformization of
spectral parameter. In Sects. 3-5, we investigate the Jost solution and scattering matrix and obtain the
symmetries of the Jost solution, scattering matrix and reflection coefficients. In Sect. 6, we discuss the
discrete spectrum and the residue conditions which are helpful to solve the Riemann-Hilbert problem
below. In Sect. 7, we derive the asymptotic behaviors of the Jost solutions and the scattering matrix.
In Sect. 8, we search for the connection between the Riemann-Hilbert problem and solution of the GI
equation. As a result, the reconstruction formula of the GI equation is expressed by the solution of
the RHP. We obtain the trace formula as well as theta condition that reflection coefficients and discrete
spectrum satisfy. In Sect. 9, under reflectionless condition, we provide a formula for the N-soliton solutions
of GI equation with nonzero boundary. As examples of N-soliton formula, for N = 1 and N = 2,
different kinds of soliton solutions and breather solutions are explicitly presented, respectively, according
to different distributions of the spectrum.

2. Spectral analysis

It is well known that the GI equation (1.4) admits the Lax pair [15]

6, = X6, ¢ =To, (2.1)
where
X = —ik?o3 + kQ — %Q203, (2.2)
T = “9iktos + 2K°Q — i Q%05 — KQuos + 5(Q:Q — QQx) + 1Q'as, (23)
and

=y N) = (200 (24
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To make convenience for the later calculation, we handle the Lax pair (2.1) and the boundary condition
(1.5) at the beginning. We make a proper transformation

q— qe—%iqét—kiqgw’
¢ — e(-iidtt3igia)os g
The GI equation (1.4) then becomes

i + Qoo + 21050, — 14°QE — G37q + 561361 2+ §q§q =0, (2.5)

with corresponding boundary
lim q(z,t) = qx, (2.6)

r—+oo
where |g+| = qo.
The GI equation (2.5) is the compatibility condition of the Lax pair

6o = X0, ¢ =Té, 2.7)

where

‘ i 0
X = —ik?os + o (la* - @§)os + kQ, Q(—q* g)’

T = —2iktoy + (R2lal? — igdlal® + 1ol + Jiad)os + 5(Q.Q - QQ.)
+26°Q — ikQq03 — kg3 Q.
Under the boundary (2.6), asymptotic spectral problem of the Lax pair (2.7) becomes
Go = X109, =110, (2.8)

where
Xi = —ik’o5 +kQx, T = (2K —q3)Xx, (2.9)

_( 0 f&)
Qs (ql 0)°
The eigenvalues of the matrix X4 are 4ik), where \> = k? + ¢3. Since the eigenvalues are doubly
branched, we introduce the two-sheeted Riemann surface defined by
N =k + g3 (2.10)
then, A(k) is single-valued on this surface. The branch points are k = +iqy. Letting

and

k+igo =re, k—igy = ree'®,

we can get two single-valued analytic functions on the Riemann surface
(T1r2)1/2ei(91+92)/2, on 517
Ak) = (2.11)

—(ri1rg)V/2ei01402)/2 op G,

where —7/2 < §; <3/2m for j =1,2.

Gluing the two copies of the complex plane S; and Sy along the segment [—iqo, iqo], we then obtain
the Riemann surface. Along the real k axis we have A(k) = +sign(k)\/k? + ¢3, where the “+” applies
on 57 and Sy of the Riemann surface, respectively, and where the square root sign denotes the principal

branch of the real-valued square root function.
Next, we take a uniformization variable

z=k+X\ (2.12)
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Imz

D+

Rez

FiG. 1. Complex z-plane consist of the region DT (the yellow regions) and the D~ (the white regions)

then, we obtain two single-valued functions
1 Q8 1 (I(Z)
=—|z——= ==lz+=. 2.1
k(z) 2 (z - ) . A(2) 5 (z ~ (2.13)

This implies that we can discuss the scattering problem on a standard z-plane instead of the two-sheeted
Riemann surface by the inverse mapping. We define D™, D~ and ¥ on z2-plane as

Y =RUR\{0}, DT ={z:Rezlmz>0}, D ={z:Rezlmz < 0}.

The two domains are shown in Fig. 1.
From these discussions, we can derive that

Im(k(2)A(2)) = =40 _ g U2+ 69)2* = 2g5((Re2)? — (Im2)?)
422 427

(|Z|4 + qé)lsz = (|Z|4 + qé)RezImz,

4l 212l
which implies that
=0, aszeX
Im(k:(z)/\(z)){ >0, aszeDT . (2.14)
<0, asze D™

3. Jost solution

For eigenvalue i\, we can write the asymptotic eigenvector matrix as

1 - i
(e E)or e o
so that X4+ and Ty can be diagonalized by Y4
Xi = Ya(—ikdo3)Yot,  To = Yi(—(2k? — ¢2)ikAos) YL . (3.2)

Direct computation shows that

(1>
2
—

w
w
b

%
det(Yi) =1+ 2
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and .
_ 1 1 M 1 7 .
Y/ L= ; (qu i ) = ;(I—i— ;UgQi), z # Fiqo. (3.4)
Substituting (3.2) in (2.8), we immediately obtain
(Yol), = —ikdos(Yo '),  (Yi'o): = —(2k? — )ik os(YS'e), 2z # +iqo, (3.5)

from which we can derive the solution of the asymptotic spectral problem (2.8)

B Y'ieie(z)ag7 z 7é +1qo,
1/’(%15»2) - {I + (.T _ 3q8t)Yi(z)’ z = #F1iqo,

where
0(z,t,2) = —k(2)A(2)[z + (2k>(2) — g3)1]-
For convenience, we will omit  and ¢ dependence in 0(x,t, z) henceforth.

We define the Jost eigenfunctions ¢4 (x,t, z) as the simultaneous solutions of both parts of the Lax
pair so that

bt = Yie?®s L o(1),  z — +oo. (3.7)
We introduce modified eigenfunctions by factorizing the asymptotic exponential oscillations
pr = pre 0o, (3-8)

then, we have
pr ~Y, x— +oo.

Meanwhile, p4+ acquire the equivalent Lax pair
(YE'ps)e — ikAYE s, 03] = Y ' AX s (3.9)
(Y e )e — iRA(2K® — ) [V pr, 03] = Y ATy o (3.10)
where AXL = X — X4 and AT =T — T4. These two equations can be written in full derivative form
d(e” oy 71y ) = e @B Y YA X Ldr + ATy dt) ps], (3.11)

which leads to the Volterra integral equations

Vi+ [ Yee My IAXG (y, t)ps(y, ¢, 2)]dy, 2 # +igo,

p (2,1, 2) = Foo (3.12)

Yi+ f [I + (21? - y)X:I:(Z)}AX:I:(yvt)/L:I: (yat7 Z)dya z = =iqo,
+oo

where we define e*? A := e*? Ae™ 7, for a matrix A.

Proposition 1. Suppose q(x,t) — g € L*(R¥), then the Volterra integral equation (3.12) has unique
solutions p(x,t,z) defined by (3.8) in o := X\ {£iqo}. Moreover, the columns pi_1 and pit o can be
analytically extended to DT and continuously extended to D U, while the columns py 1 and p_ o can
be analytically extended to D~ and continuously extended to D~ UX,, where py j(x,t,2)(j = 1,2) denote
the j-th column of p.

Proof. We can define py = (p41,p4,2) to rewrite columns of pi. Since x —y > 0, for p_, letting
W(x,z) =Y 'u_, then the first column w of W is

w(z,z) = (é) + / Gz —y,2)AX_(y)Y_(y)w(y, z)dy, (3.13)
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where

] 1 1 iq_
_ 1 2ikA(z—y)\y —1 _ - . z
G(z —y,2) = diag(1,e Y2 (2) = ~ ( lqz, e2ikA(z—y) eQikA(my)) ' (3.14)

Now we introduce a Neumann series representation for w:

w(z, z) = Z w™, (3.15)
n=0

with w(® = (é), w ) (z,2) = [ O(z,y, 2)w™ (y, 2)dy, and where C(z,y,2) = G(z — y,2)AX_Y_.

Introducing the L' vector norm ||w|| = w1 |+ |wa| and the corresponding subordinate matrix norm ||C||,
we have
lw ™V (@, 2)| < / IC(,y, 2)lllw™ (y, 2)lldy. (3.16)
—00

Note that ||[Yi| = 1+ go/|z| and Y| = (14 qo/|2])/|1 + ¢2/2%|. The properties of the matrix norm
imply
IC(2, y, 2)I| < [|diag(L, =N Y_ | AX_ ()Y
< e(2)(1 + e 2 MENED) (1K lg(y) — g-| + [lal® — a3));
where ¢(2) = [|[Y_|[||[Y=1 = (1 + qo/|2])? /11 + ¢3/2?|. Recall that Im(k)) > 0 for z € D*. For any € > 0,
let DF := DT\ (Be(iqo) U Be(—iqo)), where Be(+igo) = {z € C: |z Fiqo| < €qo}. Then, we have
2

(3.17)

ce = max ¢(z) =2+ —. (3.18)
zeDF €
Then, we prove that, for all z € D} and for all n € N,
M"l
0, ) < LD, (3.19)
where
x
M(z) =26 [ (Hlat) = a-| + lla - . (3.20)

We will prove the result by induction. The claim is trivially true for n = 0. For all z € D+ and for all
y <z, we have 1 + e~ 2m(EN(@=v) < 2 f (3.19) holds for n = j, (3.16) implies

x

D (@, 2)] < 27, / ([Ikla(y) = a-| + llal® = 45) M (y)dy =

— 00

j+1
M. (3.21)
(G+1)!
Thus, for € > 0, if g(z) — g— € L'(—00,a) for some a € R, then |g(x)|?> — g3 € L'(—00,a) because of the
boundedness of ¢(z). The Neumann series converges absolutely and uniformly with respect to z € (—o0, a)
and z € DF. Since a uniformly convergent series of analytic functions converges to an analytic function,
this demonstrates that the corresponding column of the Jost solution is analytic in this domain. U

Corollary 1. Suppose q(z,t)—q+ € L'(R¥T), then the Volterra integral equation (2.7) has unique solutions
px(z,t,2) defined by (3.7) in Xg. Moreover, the columns ¢_ 1 and ¢4 o can be analytically extended to
DY and continuously extended to DV UXy, while the columns ¢4 1 and ¢— 5 can be analytically extended
to D~ and continuously extended to D~ U X, where ¢+ ;(x,t,2)(j = 1,2) denote the j-th column of .
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Proposition 2. Suppose (1 + |z|)(q(z,t) — q1) € L*(R¥), then the Volterra integral equation (3.12) has
unique solutions p(z,t,z) defined by (3.8) in X. Besides, the columns p_ 1 and piy 2 can be analytically
extended to DV and continuously extended to DY UX, while the columns pi4 1 and p— o can be analytically
extended to D™ and continuously extended to D™ U X.

Proof. Note that at the branch points z = +iqp, we have det(Yx(z,t)) = 0, which means that Yy (z,t)
have no inverse at the branch points. However, if (1 + |z])(¢(z,t) — ¢+) € L*(R), the integral equations
have well-defined limits as z — 4iqy. To see this, for z # +iqo,

- 1
Yie RA@—yosy ~1 > sin(kA(x — y)) X+ + cos(kA(z — y)) 1. (3.22)
As z — +iqg, kA — 0, the limit of the right-hand side is I + (z — y) X+ (2), implying
/ii(if,t,Z) = Y:t + / [I + (x - y)X:I:(Z)]AX:I:(yat):U’:E(yvta Z)dyv z = iZQO (323)
+oo

Then, we have

+oo
peatotd) = (g ) = [+ @)X @A st )y, 2= Sim. (320

x

where 6, = arg(q; ). Using the same technique in the proof of Proposition 1, we can finish the proof. O

Corollary 2. Suppose (1+|z|)(q(z,t)—qs) € L*(RF), then the Volterra integral equation (2.7) has unique
solutions ¢+ (x,t,z) defined by (3.7) in X. Besides, the columns ¢_ 1 and ¢+ o can be analytically extended
to DT and continuously extended to DT UX, while the columns ¢ 1 and ¢— 5 can be analytically extended
to D™ and continuously extended to D~ U X.

Lemma 1. Consider an n-dimensional first-order homogeneous linear ordinary differential equation,
dy(z)/dz = A(x)y(x), on an interval D € R, where A(x) denotes a complex square matriz of order
n. Let ® be a matriz-valued solution of this equation. If the trace trA(z) is a continuous function, then

one has
xr

det ®(x) = det ®(z) exp /trA(§)d§ ,  z,zo €D. (3.25)

Proposition 3. The Jost solutions ®(x,t,z) are the simultaneous solutions of both parts of the Lax pair
(2.7).

4. Scattering matrix

Since trX = trT = 0 in (2.7), then by using Abel formula, we have

(det ¢4 )y = (det pi)y =0,  det(ps) = det(pre 0)73) = det(py),

so that (det pg ), = (det py): = 0, which means det(p4 ) is independent with z, ¢. Furthermore, we know
that p+ is invertible from

det py = lirjrtl det(py) =detYy =4 #0, z,teR, ze€X,. (4.1)
Tr— OO
Since ¢4 are two fundamental matrix solutions of the linear Lax pair (2.7), there exists a relation

between ¢4 and ¢_
o4 (z,t,2) = ¢p_(x,t,2)S(2), z,teR, zeX, (4.2)
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where S(z) is called scattering matrix and (4.1) implies that det S(z) = 1. Letting S(z) = (s;;), for the
individual columns

Gr1 = S5110- 1+ 8210_2, Op2=S5120_ 1+ S22¢_ 2. (4.3)
By using (4.2), we obtain

811(2) _ Wr(QSJr;;vd),Q), 812(2:) _ Wr(QSJr;;v(bA,Q), (44)

91 (Z) — Wr((b—’,;a QZ/)—i-,l)7 822(2) — WI'((]S_:;, ¢+,2) ) (45)

Proposition 4. Suppose q(z,t) — qr € LY (RT). Then, s11 can be analytically extended to D~ and contin-
uously extended to D~ U Y, while sg can be analytically extended to DV and continuously extended to
Dt UXy. Moreover, s12 and sq1 are continuous in Xg.

Corollary 3. Suppose (1 + |z|)(q(z,t) — q+) € L*(RT). Then, \(2)s11(2) can be analytically extended to
D~ and continuously extended to D~ UX, while sqo can be analytically extended to DV and continuously
extended to DT UX. Moreover, A(z)s12 and \(z)s21 are continuous in X.

Note that we cannot exclude the possible existence of zeros for s11(z) and s22(z) along . To solve
the Riemann—Hilbert problem, we restrict our consideration to potentials without spectral singularities,
ie., s11(2) # 0, s22(2) # 0 for z € X. Besides, we assume that the scattering coefficients are continuous
at the branch points. The reflection coefficients which will be needed in the inverse problem are

521 ~ 512
plz) =22 plz) =22 (4.6)
S11 522

5. Symmetry

For the GI equation with nonzero boundary, we not only need to deal with the map k — k*, but also
need to pay attention to the sheets of the Riemann surface. We can see from the Riemann surface that
the transformation z — 2* implies (k,\) — (k*,\*) and 2z — —¢2/z implies (z, \) — (k, —\). Therefore,
we would like to discuss the symmetries in the following way.

Proposition 5. The Jost solution, scattering matriz and reflection coefficients satisfy the following reduc-
tion conditions on z-plane
e The first symmetry reduction

G1(x,t,2) = 029k (v, 8,27 )02,  S(2) = 0257 (2")o2, p(z) = —p*(2"), (5.1)
0
where o9 = (z OZ) .
e The second symmetry reduction
dr(x,t,2) = o194 (x,t,—2%)o1, S(z) = 015" (=201, p(z) =p"(—2%), (5.2)
0 1
where o1 = 1 0

e The third symmetry reduction
2

(ﬁi(x,th) = —g(i)i(l',t,—q?o)UgQi, (53)
2 2
5() = (05Q) (- D)osQs o) = A=), (5.4)
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Proof. Let ¢(x,t,z) be a solution of the scattering problem (2.7), so we have

b = X6 = (=ik05 + Ll ~ B)os + Q)6 (55)

Replacing z with z*, conjugating both sides at the same time and then premultiplying both sides by o9,
we get the equation

oo (x,t,2") = (Zk‘ 2(2") o903 — §(|q|2 — @F)o903 + k*(2%)02Q ) o (x,t,x"). (5.6)
Because of k*(2*) = k(2), 02030, ' = —03, and 02Q*0; * = Q, the above equation then becomes
ra0ie,t, ") = (iK% + 4 - Boa + ()Q ) (720" (=) (5.7

Hence, o2¢*(x,t,2*) is also the solution of the scattering problem (2.7), so is o9¢*(z,t,2*)C, where C' is
an arbitrary 2 x 2 matrix.
Letting z € C\ X, with 6*(2*) = 0(z) and 02Y (2*) = 02(I +i03Q%./2) = Y102, we can derive that

o2k (z,t,2" )0y = —Yj[(as,t,x)em(z)‘73 +0(1), x— t+oo. (5.8)

From the uniqueness of the solution of the scattering problem, we can get the conclusion that

— 03¢t (2, t, 2% )02 = Py (5.9)
This is exactly what the first equation of (5.1) says. Using similar method, with symmetries 6*(—z*) =
0(2), 01030, = —03 and 01Q*y = —Q, we can easily get the second symmetry of ¢ (z,t, 2).

Next, we show the equation in (5.2). If ¢(x,t, 2) is a solution of the scattering problem (2.7), since

TE BTE N 10

so is ¢(x, ¢, —ﬁ) and ¢(x,t, —é)C, for any 2 x 2 matrix C independent of ¢. With 9(—%) = —0(2), it is

z

apparent that

a3 @\
b+ (a:,t, —0) C=Yy (-0) e W@, (5.11)
z z
Note that

; 2
17 . .
Yy (_%) e 07 03Qs = Yy (2)e7,
z z
and taking C' = —%JgQi, we get the symmetry
; 2
i ,
_7¢ (.’L’7t7 _qo) U3Q:t = Y:I:eleo-g'

z z

What will come next are the symmetries of scattering matrix. For the individual columns, the above
symmetries come to

(bj:’l(l',tZ) = i02¢*:t’2(xat72:*)7 (ﬁi}g(l’,t,Z) = _i02¢l’1($>taz*>7 (512)
i % i %
dxa(@,t,2) = ——qidro | = |,  Gxo@t,2) =——qrdrn | —— ). (5.13)
z z z z
Substituting the first one of (5.1) into (4.2), we obtain a symmetry of scattering matrix
S*(2%) = 025(2) 0, (5.14)

closely followed by the relations between the scattering coefficients

s11(2) = 532(2"),  s12(2) = =55, (2"). (5.15)
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Similarly, we can get S(z) = 01.5*(—z*)oy, which leads to

s11(2) = s55(=2"),  s12(2) = s (=27). (5.16)
Substituting (5.2) in (4.2), we obtain another symmetry of the scattering matrix
2
S (—‘f) = 53Q_5(2)(03Q5) 7", (5.17)
which is also followed by the relations between the scattering coefficients
* 2 2
44 4 4+ 40
_ 4+ U S -2 5.18
s11(2) - S22 < p > s12(%) - S21 < . ) ( )
q a3 a0+ %
s91(2) = q%sm (—;) . S22(2) = q—_su (—;) . (5.19)
Combining (5.14) with (5.17), we then get
2
S*(2*) = o9(03Q_)"'S (—?:) 03Q1+02. (5.20)
Elementwise,
2 * 2
* * q+ q * * q q
i) = B (<), spy(e) = - e (-2, (5.21)
a+ a 4 a3
X0y — 2t _ 10 *(zF) = =% ). 5.22
517 = Loy (<8, () = B (-2 5.2
Finally, all the above symmetries then give the symmetries for the reflection coefficients
- -, 4@ q* a
=p"(=2%) = —p*(2*) = —p(——=) = ——p*(—=)). 5.23
pe) =p(=27) = =" (") = op(=7) = = = (=) (5.23)
From (5.23), we can also get an important symmetry
plz) = —p(~2). (5.24)
So we have done the proof. O

6. Discrete spectrum and residue conditions

The discrete spectrum of the scattering problem is the set of all values z € C\ X, for which eigenfunctions
exist in L?(R). We would like to show that these values are the zeros of s11(z) in D~ and those of s22(%)
in DT,

We can show that the uniformization transformation (2.13) changes the segment [—iqo, iqo] on k-plane

into the circle |z| = gy on z-plane. We suppose that s9o has N simple zeros z1,...,2n, in DT N{z € C:
Imz > 0,|z] > qo}, and Ny simple zeros wy, ..., w,, in {z = ge? : 0 < p < T}, that is, s22(2) = 0 and
s22’(z) # 0 if z is a simple zero of sa3. Then, symmetries (5.1)—(5.19) imply that
2 2
S2(E2n) = 0 & 57, (£27) = 0 & 51 (j:qo) =0 52 (in:) =0, n=1,...,N, (6.1)
Zn x
and
So2(fw.,) =0< s7;(fw),)=0. m=1,..., No. (6.2)

Therefore, the discrete spectrum is the set

m=1~"

2 2\ M
* q q 1V
7 = {izn,izn,izo,izg}n_IU{iwm,iwm} 2 (6.3)

n n
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Imz

Rez

Fic. 2. Distribution of the discrete spectrum and the contours for the Riemann—Hilbert problem on complex z-plane

which can be seen in Fig. 2.

If s11(2) = 0 at z = 2, from the first of (4.4), the eigenfunction ¢4 ; and ¢_ o must be proportional

at z
dya(z,t,2,) = bpd— 2(2,t,2,), by # 0 independent of z, ¢, 2.

(6.4)

Then, we would like to derive the residue conditions which will be needed for the Riemann—Hilbert

problem.

Owing to (6.4), we have piy 1(z,t, 2%) = be”20(n

p_o(x,t,2%). As a result,

t 4 0%
Res |::U'+.,1(xa 72):| — lim (Z o Z*)M+ 1(1’ Z) _ Cnef210(zn)ﬂ (1, t,Zn)
z=z} 811(2,’) z—2z} 811( )
where C,, o ( ok
If 511( *) =0, with the symmetries (5.2), (5.1), and (4.4), we get

dra(z,t,—zn) = —bnop_ o(x,t,—2))
-2, t, —z) = —o30_2(2,t, 27,),
which also mean
pya (@, t,—25) = —bpe 2=y o (2,8, —27)
p-2(x,t, —2,) = —o3p—2(,t, 27).

Owing to (6.1), we have (s11(—2%))" = —s};(2%). It is obvious that
; b0 (b —
Res l:.u+,1(xa 72):| _ € ;(x n) —Ce —2i0(z )0,3'u 2(3? t,Zn)
F==zn s11(2) —s11(25)

because of 8(—z) = 0(2).

(6.10)
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If s92(2,) =0, then

by o(x,t,2n) = bpd_ 1(x,t, 2n); (6.11)
in other words, it is py o(x,t, 2,) = b,e??n) (2,1, 2,). In that way, we can derive that
t -
Res [W = Cne®C) (2,1, 2,), (6.12)
2=2zn 522
where C,, = Fw e (z y- I S22(—2pn) = 0, also from (5.1), (5.2) and (4.5) we can get
G 1(x,t,—zn) = 03¢_1(2,t, 2p), (6.13)
dyo(x,t,—2) = fbnqb_ 1(z,t, —2n), (6.14)
which also mean
poa(z,t,—zn) = pe (.t z), (6.15)
piy2(x,t, —2,) = —by, 6219 =)y (x,t, —zn). (6.16)
With (6.1), we have (s22(—2p)) = —shs(2y,). Similarly, we can get the residue
t -
Res [W} = Cre® ) oap (2t 2). (6.17)
w=—z | 892(2)

Because of the symmetries, we can get the relations between the norming constants. Using the two
equations in (5.12) and comparing with (6.11), we know that b, = —b%. It is clear that (6.1) implies
Sho(zn) = (s71(2%))’, so we have

. b b
Ch=—Fr—~=—-——7""—=-Cp. (6.18
Tolen) G2 :
Substituting (5.13) in (6.4) and (6.11), we obtain
2
do a- 90
g0 g g (20 6.19
o8- () s
2 * 2
¢+,1 (Z’,t, _qO> = q;bngb—,Q <_q0> ) (620)
n q+ Zn
From (5.13), (6.6) and (6.14), we get
2 2
¢+,2 <I,t, qg) - _q: bn¢—,1 <qg) ) (621)
n q+ zn
2 * 2
i1 <x,t, q°> =L s <q0> . (6.22)
Zn q+ Zn
Furthermore, from the symmetries of the scattering coefficients (5.17) and (5.20), we get the relation
qO q— * *
5 - —s71(2 6.23
a(-2) - L, (6:23)
By differentiating the above equation, we have
2 2
s <q0> - <Z") &= (51, (22)). 6.24
(-2 = () Lene (6.24)

Similarly,

()= (2) ey, (6:25)
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2 *\ 2 *
/ dp Zn, q— * /
o (<2) = (2) (L) tatend (6.26)
P /) \a+ e
% AN
/ 0 n — * /
2 (2) = (2) (%) it (6.27
2, w0/ \a+ v

Finally, combining the above relations, we get

py (¢, 2) _2ip(— ) %
Res |—/————| = Cn,1ne wlu_ ol xt,—— ), 6.28
Z=_‘1(2)|: 811(2) N1+ H—2 P ( )

2

z,t, 2 ~ 2i0( — 20 q?
R682 |:M+)522(2(z)):| = CN1+ne < ">,u7,1 ($;t7 _2) ) (629)

z:—Z—Q n

2
pea(et,2) —2io( ) a

R —— " = —CpN,4n " _ el I 6.30
| [ s11(2) } Nitn® T\ T, (6:30

t ~ 2i(— 8 2
Res [W} = CN,+n€ ( z">03u_,1 (:z:,t,—q2> . (6.31)

L $22(2) 2k

where
@ (@) - 5 w0\’ q
CN1+n = — - Cn, CN1+n = b ;Cn, (632)
q- \ #n zZn) 4
with the relation )

CN1+TL = 70;714—717 (633)

forn=1,...,N;.
Analogously, we get the residue conditions at +w,, and +w,,

t o

Res (@t 2) = Conypme 20 o (2, t,ws,), (6.34)
=Wy, 511(2’)

t v
Ros, LElBhD) _ g o000 00 (0,1, 03), (6.35)
z=—wy,  511(2)

x,t, 2 ~ .

Bes M = CQNlerezle(wm)/u‘*,l(xv t, wm)7 (636)
Z=Wm 822(2)

t . .

Res /J+72(a?, 72) _ CQNlertee(wm)USMf,l(x» t, wm)7 (637)
z=—wm  S99(2)
where Con, 4m = %, C’2N1+m = —C3n, 4m and ban, 1, is independent of x,t for m =1,..., Na.

7. Asymptotic behaviors

To solve the Riemann—-Hilbert problem in the next section, it is necessary to discuss the asymptotic
behaviors of the modified Jost solutions and scattering matrix as z — oo and z — 0 by the standard
Wentzel-Kramers-Brillouin (WKB) expansions.

Proposition 6. The asymptotic behaviors for the modified Jost solutions are given as

pa(zt,z) =T+o(z7h), 2z— oo, (7.1)

?
py(z,t,2) = —;UgQi +o(1), =z-—0. (7.2)
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Proof. We consider the following ansatz for the expansions of the modified Jost solutions u4(x,t,z) as
z—ooand z — 0

pP (et P (1)

par(ast2) = i (@) + S T o), wsz oo, (7.3)
(=1)
t
pa(x,t,2) = 2= f) i (@, t) + i (2. 1)z + 0(2?),  as 2 — 0. (7.4)

Substitute the above expansions into the Lax equation (3.9), and let A; and A, denote, respectively, the
diagonal and off-diagonal parts of the matrix A. As z — oo, we have

: o aD LR ; o : IR
<I+Z03Q¢)( e e )} :7<z2—;g> (1+03Q¢>< R i it ) 03} (7.5)

4
( ) NEE)

22

+--0). (7.6)

. ) 1 2
+(I+ fogQi>F(|q|2 —ad)os + 5z - £)aQe)(uf + HE-
z 2 2 z
By matching the O(2?) terms, we obtain that
1, o] =0,

which means that uf )is a diagonal matrix. We record it as

) = (a(ox) b(?@)'

By matching the O(z) terms, we obtain that

4[M$)703] - *[UBQiMi ;03] + AQiM =0; (7.7)
then, we can get the off-diagonal part of ,ugt)
W _ 0 —ib(z)q
Hio = (—za(ac)q* 0 . (78)
By matching the O(1) terms, we obtain that
i i 1 i
p, = L2 5]+ lios Qe 5] + 4 (1l — Bosn® + 580l + Loyl (19)

The left-hand side of (7.9) is a diagonal matrix, and the first two parts of the right-hand side are off-
diagonal matrix, so we can just calculate the last three parts in the right-hand side. By calculating, we

get
az; 0\
ChE! -
so that
0) _ C
WY =, (7.11)
where C' is a constant matrix. To find out the exact value of C, we see that
lim e =Ye=1- fogczi = lim (uf +--), (7.12)

so that C' = I. Therefore, we get the asymptotic behavior of the modified Jost solution
pale,t,2) =1+ 0(=""), 2 oo,
When z — 0, by matching the O(z~%) terms, we obtain that

[03Qeal Y, 03] = 0, (7.13)
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that is to say the diagonal part of u(ifl) is 0, so we can record it as

~-1) _ [ a(r)
By matching the O(27?) terms, we obtain that
O e
lui,d = < 9 ngk) (715)

2
0
By matching the O(z72) terms, we obtain that /l(ifl) = C, where C is a constant matrix. From the

expansion (7.4), we have

lim zfie = 2Yy = 2 (1 - 203Qi> = lim (Y 4z + ). (7.16)

rz—+o0

Thereby, C' = —io3Q4 and ,1(;1) = —io3Q+. Finally, we get the asymptotic behavior

pt(z,t,2) = —éUg,Q:t +0(1), =z-—0.
O

Inserting the above asymptotic behaviors for the modified Jost eigenfunctions into the Wronskian
representation (4.4) and (4.5), with a little calculations, we get the asymptotic behaviors of the scattering

matrix.
Proposition 7. The asymptotic behaviors of the scattering matriz are
S(z)=1+0(z""), z— o0, (7.17)
S(z) = diag (‘1—7 q+> +0(2), z—0. (7.18)
q+ q-

Proof. From the representation of the scattering coefficients (4.4), (4.5) and the asymptotic behaviors,

we have
_ Wi(dy1,0-p) (140N O(x) 9% | @
Sll_f_det oY 14+0(:1 1_z72+zi4+”.
- % | B
=(1+0(z")) <1—Z2+24+--->
=1+0(:z).
Similarly,
522 = Wf(¢,vla¢+>2) =1+0(").
Hence, we have the asymptotic behavior (7.17).
Asz—0
Wr(¢41,0-2) < 0o(1) —ig_ 4+ O(l)> (22 z* )
= T TEE et P z I 4.
7 T\t rom o @
q-
=— +0(2).
4+ )
S99 — Zi + O(Z)

Therefore, we obtain the asymptotic behavior (7.18).
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8. Riemann—Hilbert problem

As we all know, the equation (4.2) is the beginning of the formulation of the inverse problem. We always
regard it as a relation between eigenfunctions analytic in DT and those analytic in D~. Thus, it is
necessary for us to introduce the following Riemann-Hilbert problem.

Proposition 8. Define the sectionally meromorphic matriz

Mot M‘:(%uf,z),aszeD_, -
(x’72)_{M+—(M—,1 M+’2),asz€D+. (81)
522
Then, a multiplicative matriz Riemann—Hilbert problem is proposed:
o Analyticity: M (z,t, z) is analytic in C\ X and has single poles.
e Jump condition
M~ (z,t,2) = MT(z,t,2)(I — G(x,t,2)), 2€, (8.2)

where

Gtz = (A 0. 83)

o Asymptotic behaviors

M(z,t,2) ~T+0(z7Y), 2z— o0, (8.4)
M(z,t,2) ~ —%agQ_ +0(1), z—0. (8.5)

Proof. The analyticity can be find out from (4.3) and the analyticity of the modified Jost solution zi.
Also from (4.3), we get

fig2(2 1, 2)

M—,Q(x’t7z) = _ﬁ(z)emeﬂ'—,l(gjat’z) + 822(2) (86)
"*(g”(t)) 1 (2) + (e (st 2)
= (1= (N1 (1,8, 2) + pla)e2i0 Ler2lDo02) (5.7)

822(2)

which result in the jump condition.
Next we discuss the asymptotic behaviors. With the above asymptotic behaviors of the modified Jost
solution and scattering matrix, we can derive that as z — oo,

M~ (x,t,2) ~ T4+ 0(z1), (8.8)
M*(z,t,2) ~T+0(z71). (8.9)
Thus, we derived the asymptotic behavior (8.4). Similarly, we can get another asymptotic behavior (8.5)
immediately. U

Solving the above Riemann—Hilbert problem requires us to regularize it by subtracting out the asymp-
totic behaviors and the pole contributions. It is convenient to define

Zn, n:l,...,Nl,
2

=4 —z=%—, n=Ni+1,... 2N, (8.10)
e

Wn—2N TL:2N1+1,...,2N1+N2,
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and rewrite (8.2) as

; 2N1+Ns chs M~ 2N, +N, R?*S M-
M~ -1+ -03Q- — - B
P D Dl SD DR e

aN1+Ns Res M+t an,+N, Res M T

Cn —Cn
- Z ZﬁCn - Z Z+Cn

" e B B (8.11)
; 2N1 4N, %@SM IN1+ N, RgsM
Mt T+ - o “Sn
NP P P Pl S s

N1+ N P}es Mt aN 4N, Réas M+t
_ Z S Z N Vaxed
n=1 2 C" n=1 z+ Cn
Apparently, the left-hand side is analytic in D~ and is O(z7!) as z — oo, while the sum of the first
five terms of the right-hand side is analytic in Dt and is O(27!) as z — co. In the end, the asymptotic
behavior of the off-diagonal scattering coefficients implies that G(x,t,2) is O(z7!) as z — oo and O(2)
as z — 0 along the real axis.
Using Plemelj’s formula, we finally get

ON;+Ns Res M™T  2N,+N, RebM

M(:ctz)ff—fagQ + Z = 4 Z

oN1+N: Res Mt 2N 4N, RebM

—Cn -G 1 M+(f£,t,g)

— —_—t— | ——= t,z)d 3.

+ El Z+Cn+ El e to c—z G(z,t,2)d¢, zeC\
n= n= >

(8.12)

8.1. Residue conditions and reconstruction formula

Next, we need to derive an expression for the residues which are in (8.12). We know from the residue
relations (6.5), (6.10), (6.12), (6.17), (6.28)—(6.31) and (6.34)—(6.37) that only the second column of M™

2
has poles at £z, ig—i and fw,,. Explicitly that is

Zli%i Mt =(0C,e*C) i (2,t,¢,)), n=1,...,2N1 + No, (8.13)
ZBEZL Mt =(00C,e* oy 1 (x,t,(,)) . n=1,...,2N1 + No, (8.14)
Zfi%% M~ = (Che 298y o(x,t,(2)0), n=1,...,2N; + No, (8.15)
Z:RE%LM_ = (=Cpe™29CDogu_o(2,,¢:) 0), n=1,...,2N; + N,. (8.16)

Hence, we can calculate the second column of M T at ¢} and obtain

g eiv- 2N1+ N2 & 2i0(Cx)
* q—¢© Ck F
/’L*,Q(xatv CJ) = ( Cé—il/_ ) +2 E 4*2 C2 Jk/’bf 1(37 t Ck)

k=1
(8.17)
L [ M*(,t,()
o5 WG(ﬂﬁ,t,C)dC,
2
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where Zj;, = <% C()),forj,kl,...,ZNlJrNg.
k

In the same way, we can evaluate the first column of M~ at ¢,, and obtain

2N1H N2~ —2i0((5)
1 Cie J .
:u—,l(x7ta<n) = (_Z * ) + 2 E z Zj7lﬂ'—72(x7t7§j)

& 1= j=1 G~ CJ*2
L MO 1
2mi C—Cn o '
b

In the remaining parts of this section, we would like to give the reconstruction formula from the
solution of the Riemann—-Hilbert problem. The solution (8.12) implies that

2N1+N2

1
M(z,t,z) =1+ — | —to3@Q—- + Res M™ + Res M + Res M~
(@,t,2) z ( 3@ ; (Res e=—Cn e=Cx

(8.19)
+ Res M‘)—%/M*(m,t,C)G(m,t,C)dC +O(:2), 2 — o0
b

&)
In the above equation, taking M = M~ and comparing the (1,2) element with the same location of “; ,

using (7.8), we get the reconstruction formula for the potential

2N1+N2 ~ ) 1
q(x,t) =q- +2i Z Cre® ) 11(Ca) — Gy /(M+G)1,2($,ta ¢)d¢. (8.20)
n=1 )

8.2. Trace formula and theta condition

Recall that the discrete spectrum is composed of +¢,, and (. Define the functions as follows:

2N1+N2 o 1x2
ﬂJr(z) = 522(2) %,
n=1 n
Wi s o (8.21)
B7(2) = s11(2) H 2277&’2
n=1 n

From the analyticity of the scattering matrix, we see that the above functions are analytic and have no
zeros in DT and D, respectively. When z — oo, % (2) — 1. Moreover, 51 (2)37(2) = s11(2)s22(2).
Again det S(z) = 1 implies that

1 _
= T TIBBL g p(2)p(z) = 1+ pl(2)p* (27); (8.22)
511522 511522
thus,
1
B (2)B(2) z € 3. (8.23)

14 p(2)p*(27)
Taking logarithms to the above relation and using the Plemelj’ formula, we have
1 log|1 (¢

21 (—z
b
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Substituting 87 (z) for s11(z), we then obtain

1 /1og[1+p<<>p*<<*>] NN 2 w2

— d I | — D~ 8.25
27 ( — 2z C ] 22 _ C’?L ’ S ’ ( )
) n=

s11(2) = exp

which is called trace formula and express the analytic scattering coefficient in terms of the discrete
eigenvalues and the reflection coefficient. In the same way, we can obtain sg2(2)

1 [ log[l+ p(¢)p*(¢* N 22
522(2) = exp Tm/ og| Cpil”( Nac ]:[1 ;_7%2 ze D (8.26)
by n=

Recalling the asymptotic behavior of the scattering matrix and taking the limit z — 0 of (8.25), we
then obtain the so-called theta condition

N N.
q; - 1 arglz ) arg(w i IOg[l—l—p(C)p*(C*)]
arg (q+> = 16; 8(zn) +8§::1 g(wm) + 2772/ ; dc. (8.27)

9. Multi-soliton solutions
9.1. The formula for IN-soliton solutions

Now we focus on the potentials g(z,t) with the reflection coefficient p(z) = 0. For convenience, denote

C,; . -
(0,t2) = e PR =1 2N . (9.1)
J

Observing (8.20), we find that only the first component of the eigenfunction is required in the reconstruc-
tion formula. So that we can derive

i 2N1+N2
N*,l?(xatac;) :7§q7 - Z QC;CZ(Cj)M*,ll(xvtaCk), j:1,~~~»2N1+N2a (92)
J k=1
2N1+N2
N—,ll(xatacn) = 1+ Z QC;Cj(Cn)N—,IQ(x;LC;)y n= 13"'72N1 +N2 (93)
j=1
Substituting (9.2) in (9.3), we get
2N1+N> 2N1+N2 2N1+N>
/J’—,ll(xvtaCH) =1-2ig- Z Cj(Cn) - Z Z 4C;<20j(CTL)CZ(CJ)M—,ll(xat,Ck)7 (94)
=1 j=1 k=1

for n = 17...72N1 —|—N2
Next, to get the brief expression of the reflectionless potentials, we would like to write this system in
matrix form. Let

X=(X1,....Xon4+m)s B=(Bi,...,Bn+m),

where
2N1+N2
X =p-11(2,6,¢),  Bn=1-2ig- >  ¢j(¢), n=1,...,2N1+ Ny.
j=1
Define the (2N + Na) x (2N7 + No) matrix A = (A1), where

2N1+N>

Ape = Y 46%¢i(Ca)ci((),  mk=1,...,2N1 + Ny
j=1
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Then the system (9.4) becomes

PX =B,
where P =1+ A = (Py,...,Pan,+n,). The solution of the system is
det Pext
X, =S8 19N, + Ny, 9.5
detp " (R ©-5)

where
Pt = (Py,...,Py1,B,Pryy, ..., Pon4n,).

Therefore, putting the above Xi,..., Xon,4+n, into the reconstruction formula, we then get the brief
expression for the potential

.det Paus
q(z,t) = q- — QZWa (9.6)

where the (2N7 + N3 4+ 1) x (2N7 + N3 + 1) matrix is given as

au, 0 Yt
P g_(B M)’ Y:(Y1,.~';}6N1+N2)tv

and
Y, = Cpe??@tin) =1 ... 2Ny + N.

As applications of the N-soliton formula (9.6), we would like to consider the one-soliton solutions and
two-soliton solutions. Recall that the GI equation is invariant under scaling: If ¢(z, t) solves the equation,
so dose cq(x,t), for ¢ € R. This allows us to restrict ourselves to the case qo = 1 without loss of generality.

9.2. One-soliton solutions for N =1

» One-breather with parameters Ny = 1 and Ny = 0.

Let ¢, = Zet@, with Z>1and a € (0,%), then the other points in discrete spectrum are (» = —+e'®,
—( = 2, —(y = “‘, (= Ze o, C2 = —ie_w —(f = —Ze " and —(§ = Ze_w. By using the
theta condltlon (8. 27) we have

arg (¢-/q+) = 16a.
We set ¢ = 1 and ¢, = e 1%® And we can also know that C; = e %% with &, ¢ € R and Oy =
— Lefil2ate),
Substituting above data in formula (9.6), we get the one-soliton solution

0 Yi Y,
det Bl 1+ A11 A12
By Ay 14 Ag

q(z,t)=1-—2i T AL A, , (9.7)
det < A 1+ A22>
where
0(I7t’ CJ) (CJQ CQ)( ( (C2 ?) - Q)t)a J=12
Cj ((E,t7 Z) = 2 S’jcfz e_2i9($7t,<;)7 .7 = 17 2a

2
Bn=1-2ig-) ¢(Gn), n=12
j=1
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FiG. 3. One-breather with parameters Ny = 1, Na = 0, z1 = 2e%i, C1 = i. a The three-dimensional graph of one-soliton
solution. b The contour of the wave. ¢ Wave propagations along x—orientation with ¢ = —20,0 and ¢ = 20. d Wave
propagation along t—orientation with z =0

2
Ape =Y 4C%¢i(C)ck((),  nk =12,

j=1
Y, = —C:‘Le%e(‘r’t’g"), n=1,2.

The properties of the one-soliton solution are shown in Fig. 3.
» One-single soliton with parameters Ny = 0 and Ny = 1.

Let ¢, = e'?, with 8 € (0,3 ), then the discrete spectrum can be expressed as {e/?, —e'? e~ —e=1F}.
By using theta condition (8.27), we get

arg(q-/q+) = 8. (9.8)
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(b)
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F1G. 4. One-single soliton with parameters N1 =0, No =1, w1 = e%i, C'1 = i. a The three-dimensional graph of one-soliton
solution. b The contour of the wave. ¢ Wave propagations along x—orientation with ¢t = —2,0 and ¢t = 2. d Wave propagation
along t—orientation with z = —2,0 and ¢t = 2

We set ¢_ = 1 and then ¢ = e 3. Let C} = ¢'"*, with 7, x € R. Once again we get the soliton solution
with parameters Ny = 0 and N, =1

0 Y
- 2,det(Bl+A>
Q(x’ )— - Zl—&——A’

where

1
O(x,t,¢) = -5 sinh(2i3) (z + (cosh(2i3) — 2)t),
IT+K . .
€ e—2z9(w,t7C1)

a(z,t,G) = m ,
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B =1-2ic;(z,t,(1),

A =41 ()e (G,
Y = _Cikem’e(w,t,(l).

The properties of the one-soliton solution are shown in Fig. 4.

9.3. Two-soliton solutions for N = 2

» Two-breather with Ny =1 and Ny = 1.
Let (1 = Ze'™ with Z > 1 and a € (0, %). Let (3 = ¢'’, with 3 € (0, Z). By using the theta condition
(8.27), we have

arg (q—/q+) = 16a + 803.

We set ¢_ = 1 and ¢y = e~ 822+8)  And we can also know that O] = e$T%%, Cy = 7%, with 7, k,&, p €
R, then Cp = — et~ (22%%)_ Substituting above data in formula (9.6), we get the two-soliton solution

0 Y, Y, Y
By 1+ A A Ags
By Ay 14 A A
By Az Azy  Azz+1
1+ A A Az ’
det Agr 1+ Ay Ao
Az Azs 1+ Ass

det

q(z,t)=1—21 (9.10)

where

1

1 1 1
0(x,t,¢5) = fz(gf - E)(z + (5(@ + ?) —-29t), j=1,2,3,

C . x
Cj(l',t, Z) = 22 —jc*z 6—210(90,15,(].)’ J=12,3,
J

3
Bn:1_2iqucj(gn)a n:17273a
j=1

3
Ak =Y 4G (Ca)er(G), nk=1,2,3,

j=1
Y, = —Cpe?f@te) =123

The properties of the two-soliton solution are shown in Fig. 5.
» Two-soliton with N; = 2 and Ny = 0.
Let ¢; = Zje™, with j = 1,2, Z; > 1 and a; € (0, §). By using the theta condition (8.27), we have

arg (¢—/q+) = 16(on + az).



149 Page 24 of 28 Z. Zhang and E. Fan ZAMP

(b)*
(a) 3

(c)2.5 T T T (d) 35 T T T T T T T
3 .
2 »
25
|
15 ol
= =
1 T S —— e | J)
\ 1 -«\/J\/\/\/\/\/\/\ (\/\/\/\/\/W\,\,\m-
05f ‘
051
0 . L L 0 . . . ! . " L
-10 -5 0 5 10 -40 -30 -20 -10 0 10 20 30 40
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Fic. 5. Two-breather with parameters Ny =1, No =1, w1 = e%i, 21 = Qe%i, C1 = C9 = C3 = i. a The three-dimensional
graph. b Then contour of the wave. ¢ Wave propagations along z—orientation with ¢ = 0. d Wave propagation along
t—orientation with x =0

We set g_ = 1 and ¢, = e '6e1ta2)  And we can also know that C; = et Oy = €™t with
&, ¢, 7,k € R. Substituting above data in formula (9.6), we get the two-soliton solution

0 " Y, Y3 Yy

By 1+ A, A Az Agy

det | Bo Asr 1+ Az Ao Aoy

By Az Azg 14+ Az Az

By Agp Ay Agz 1+ Ay

1+ A A Az Ay
Agp 1+ Ay Ay Aoy
Az Azg 1+ Azz Az

Agy Ay Ays 1+ Ay

glz,t) =1—2i , (9.11)

det
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(b) ¢

2
3
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X
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(c) (d)
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\ 350 .
3t \ ]
3l i
25+ 1
=3 T 25+ 1
2+ ]
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13 /\ 15} 1
1 | 1 \ .
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Fia. 6. Two-soliton with parameters N1 = 2, No =0, 21 = 1+ 2i, 220 = 2414, C1 = C2 = i. a The three-dimensional graph.
b The contour of the wave. ¢ Wave propagations along xz—orientation with ¢ = 0. d Wave propagation along t—orientation
with z =0

where
1,5 1 1 5 1 .
e(xvt’gj) = _7(<j - 72)(334' (7(Cj + 72) - Q)t)’ J=1,2,3,4,
4 Cj 2 Cj
et 2) = 5 Do G 1934
VA RS) 2 *2 ) J=154494%
276
4
Bn:1_2zq—zcj(<n)7 TL:1,2,3,4,
j=1

4
A =Y 4GP (G)ei(G)s nok =1,2,3,4,
Jj=1

Y, = —Cre¥0@ten) =123 4.
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Fic. 7. Two-soliton with parameters N1 = 0, N2 = 2, w1 = e%, wy = e%, C1 = C2 = i. a The three-dimensional graph.
b The contour of the wave. ¢ Wave propagations along x—orientation with ¢ = 0. d Wave propagation along t—orientation
with x =0

The properties of the one-soliton solution are shown in Fig. 6.
» Two-soliton solution with N; = 0 and Ny = 2.
Let ¢; = e, with 8; € (0,%) and j = 1,2. By using theta condition (8.27), we get

)’ 2
arg(q—/q+) = 8(B1 + B2). (9.12)
We set ¢_ = 1 and then ¢, = e %51+52) Let O] = ™% and Cy = £t with 7, k, &, ¢ € R. Once again
we get the two-soliton solution with parameters N; = 0 and Ny = 2
0 Y Y,
det | By 1+ A1 Ape
By Ay 1+ Ag

1+An A 7
d6t< Ay 1+A22>

glz,t)=1—2i (9.13)
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where
1 1 1 1 .
0(,t,¢) = —5(G - @t (506 + @) -2 i=12
J J
. 4 .
ci(z,t,2) = —2— e_219(7"t’<j), ji=12,
J( ) 22 _ <—;<2

2
By =1-2ig-) ¢(G), n=12
j=1

2
Ak =Y 4G (G (G), ok =1,2,

j=1
Y, = —Cre?f@te) =12,

The properties of the two-soliton solution are shown in Fig. 7.
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