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Abstract. In this article, we focus on the inverse scattering transform for the Gerdjikov–Ivanov equation with nonzero
boundary at infinity. An appropriate two-sheeted Riemann surface is introduced to map the original spectral parameter
k into a single-valued parameter z. Based on the Lax pair of the Gerdjikov–Ivanov equation, we derive its Jost solutions
with nonzero boundary. Further asymptotic behaviors, analyticity and the symmetries of the Jost solutions and the spectral
matrix are in detail derived. The formula of N -soliton solutions is obtained via transforming the problem of nonzero
boundary into the corresponding matrix Riemann–Hilbert problem. As examples of N -soliton formula, for N = 1 and
N = 2, respectively, different kinds of soliton solutions and breather solutions are explicitly presented according to different
distributions of the spectrum. The dynamical features of those solutions are characterized in the particular case with a
quartet of discrete eigenvalues. It is shown that distribution of the spectrum and non-vanishing boundary also affect feature
of soliton solutions.
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1. Introduction

It is well known that the nonlinear Schrödinger (NLS) equation [1,2]

iqt + qxx + 2|q|2q = 0, (1.1)

which is one of the most important integrable systems in the soliton theory, plays an important role
and has applications in a wide variety of fields. Besides the NLS equation (1.1), derivative NLS (DNLS)
equations were also introduced to investigate the effects of high-order perturbations [3–5]. Among them,
there are three deformations of the derivative NLS equations [5]: The first one is Kaup–Newell equation
(also called DNLSI equation) [6]

iqt + qxx + i(|q|2)x = 0. (1.2)
The second type is the Chen–Lee–Liu equation (also called DNLSII equation) [7]

iqt + qxx + i|q|2qx = 0. (1.3)

The third type is the Gerdjikov–Ivanov (GI) equation (also called DNLSIII equation) which takes the
form [8]

iqt + qxx − iq2q∗
x +

1
2
q3q∗2 = 0, (1.4)

where the asterisk ∗ means the complex conjugation. It has been discovered that the three kinds of
DNLS equations can be transformed into each another via the gauge transformations [3,4]. The DNLS
equations are regarded as models in a wide variety of fields such as weakly nonlinear dispersive water
waves, nonlinear optical fibers, quantum field theory and plasmas [9–12]. In plasma physics, the GI
equation (1.4) is a model for Alfvén waves propagating parallel to the ambient magnetic field, with q being

http://crossmark.crossref.org/dialog/?doi=10.1007/s00033-020-01371-z&domain=pdf
http://orcid.org/0000-0002-8816-8398


149 Page 2 of 28 Z. Zhang and E. Fan ZAMP

the transverse magnetic field perturbation and x and t being space and time coordinates, respectively
[13,14].

Though there are gauge transformations among the three DNLS equations, such relations turn out
to be rather complicated and implicit, which is difficult to apply them to study initial-value problem
with nonzero boundary. In this paper, we present a direct approach to the initial-value problem of GI
equation via inverse scattering transformation. The GI equation has been studied through many methods,
for instance the Darboux transformation [15], the nonlinearization [16,17], the similarity reduction, the
bifurcation theory, and others [18,19]. In particular, Riemann–Hilbert method is used to construct N -
soliton of the GI equation with zero boundary [20]. However, to our knowledge, there is still no work
on GI equation (1.4) with nonzero boundary by using inverse scattering transform or Riemann–Hilbert
approach. In this article, we investigate the soliton solution of GI equation (1.4) with the following nonzero
boundary:

q(x, t) ∼ q±e− 3
2 iq4

0t+iq2
0x, x → ±∞, (1.5)

where |q±| = q0 > 0, and q± are independent of x, t.
It must be admitted that the inverse scattering transform method plays a significant role during the

discovery process of the exact solutions of completely integrable systems [21,22]. As a new version of
inverse scattering transform method, the Riemann–Hilbert approach has become the preferred research
technique to the researchers in investigating the soliton solutions and the long-time asymptotics of inte-
grable systems in recent years [23,24]. More recently, the Riemann–Hilbert approach has become a hot
spot to investigate the integrable systems with nonzero boundary [25–29].

This paper is organized as follows: In Sect. 2, we get down to the spectral analysis by introducing an
appropriate transformation. Then, we introduce the two-sheeted Riemann surface for uniformization of
spectral parameter. In Sects. 3–5, we investigate the Jost solution and scattering matrix and obtain the
symmetries of the Jost solution, scattering matrix and reflection coefficients. In Sect. 6, we discuss the
discrete spectrum and the residue conditions which are helpful to solve the Riemann–Hilbert problem
below. In Sect. 7, we derive the asymptotic behaviors of the Jost solutions and the scattering matrix.
In Sect. 8, we search for the connection between the Riemann–Hilbert problem and solution of the GI
equation. As a result, the reconstruction formula of the GI equation is expressed by the solution of
the RHP. We obtain the trace formula as well as theta condition that reflection coefficients and discrete
spectrum satisfy. In Sect. 9, under reflectionless condition, we provide a formula for the N -soliton solutions
of GI equation with nonzero boundary. As examples of N -soliton formula, for N = 1 and N = 2,
different kinds of soliton solutions and breather solutions are explicitly presented, respectively, according
to different distributions of the spectrum.

2. Spectral analysis

It is well known that the GI equation (1.4) admits the Lax pair [15]

φx = Xφ, φt = Tφ, (2.1)

where

X = −ik2σ3 + kQ − i

2
Q2σ3, (2.2)

T = −2ik4σ3 + 2k3Q − ik2Q2σ3 − ikQxσ3 +
1
2
(QxQ − QQx) +

i

4
Q4σ3, (2.3)

and

σ3 =
(

1 0
0 −1

)
, Q =

(
0 q

−q∗ 0

)
. (2.4)
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To make convenience for the later calculation, we handle the Lax pair (2.1) and the boundary condition
(1.5) at the beginning. We make a proper transformation

q → qe− 3
2 iq4

0t+iq2
0x,

φ → e(− 3
4 iq4

0t+ 1
2 iq2

0x)σ3φ.

The GI equation (1.4) then becomes

iqt + qxx + 2iq2
0qx − iq2q∗

x − q2
0q2q∗ +

1
2
q3q∗2 +

1
2
q4
0q = 0, (2.5)

with corresponding boundary
lim

x→±∞ q(x, t) = q±, (2.6)

where |q±| = q0.
The GI equation (2.5) is the compatibility condition of the Lax pair

φx = Xφ, φt = Tφ, (2.7)

where

X = −ik2σ3 +
i

2
(|q|2 − q2

0)σ3 + kQ, Q =
(

0 q
−q∗ 0

)
,

T = −2ik4σ3 + (ik2|q|2 − iq2
0 |q|2 +

i

4
|q|4 +

3
4
iq4

0)σ3 +
1
2
(QxQ − QQx)

+ 2k3Q − ikQxσ3 − kq2
0Q.

Under the boundary (2.6), asymptotic spectral problem of the Lax pair (2.7) becomes

φx = X±φ, φt = T±φ, (2.8)

where
X± = −ik2σ3 + kQ±, T± = (2k2 − q2

0)X±, (2.9)
and

Q± =
(

0 q±
−q∗

± 0

)
.

The eigenvalues of the matrix X± are ±ikλ, where λ2 = k2 + q2
0 . Since the eigenvalues are doubly

branched, we introduce the two-sheeted Riemann surface defined by

λ2 = k2 + q2
0 ; (2.10)

then, λ(k) is single-valued on this surface. The branch points are k = ±iq0. Letting

k + iq0 = r1eiθ1 , k − iq0 = r2eiθ2 ,

we can get two single-valued analytic functions on the Riemann surface

λ(k) =

{ (r1r2)1/2ei(θ1+θ2)/2, on S1,

−(r1r2)1/2ei(θ1+θ2)/2, on S2,
(2.11)

where −π/2 < θj < 3/2π for j = 1, 2.
Gluing the two copies of the complex plane S1 and S2 along the segment [−iq0, iq0], we then obtain

the Riemann surface. Along the real k axis we have λ(k) = ± sign(k)
√

k2 + q2
0 , where the “±” applies

on S1 and S2 of the Riemann surface, respectively, and where the square root sign denotes the principal
branch of the real-valued square root function.

Next, we take a uniformization variable

z = k + λ; (2.12)
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Fig. 1. Complex z-plane consist of the region D+ (the yellow regions) and the D− (the white regions)

then, we obtain two single-valued functions

k(z) =
1
2

(
z − q2

0

z

)
, λ(z) =

1
2

(
z +

q2
0

z

)
. (2.13)

This implies that we can discuss the scattering problem on a standard z-plane instead of the two-sheeted
Riemann surface by the inverse mapping. We define D+, D− and Σ on z-plane as

Σ = R ∪ iR\{0}, D+ = {z : RezImz > 0}, D− = {z : RezImz < 0}.

The two domains are shown in Fig. 1.
From these discussions, we can derive that

Im(k(z)λ(z)) = Im
z4 − q4

0

4z2
= Im

(|z|4 + q4
0)z2 − 2q4

0((Rez)2 − (Imz)2)
4|z|4

=
1

4|z|4 (|z|4 + q4
0)Imz2 =

1
2|z|4 (|z|4 + q4

0)RezImz,

which implies that

Im(k(z)λ(z))

{= 0, as z ∈ Σ
> 0, as z ∈ D+ .
< 0, as z ∈ D−

(2.14)

3. Jost solution

For eigenvalue ±iλ, we can write the asymptotic eigenvector matrix as

Y± =

(
1 − iq±

z

− iq∗
±

z 1

)
= I − i

z
σ3Q±, (3.1)

so that X± and T± can be diagonalized by Y±

X± = Y±(−ikλσ3)Y −1
± , T± = Y±(−(2k2 − q2

0)ikλσ3)Y −1
± . (3.2)

Direct computation shows that

det(Y±) = 1 +
q2
0

z2
� γ, (3.3)
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and

Y −1
± =

1
γ

(
1 iq±

z
iq∗

±
z 1

)
=

1
γ

(I +
i

z
σ3Q±), z �= ±iq0. (3.4)

Substituting (3.2) in (2.8), we immediately obtain

(Y −1
± ψ)x = −ikλσ3(Y −1

± ψ), (Y −1
± ψ)t = −(2k2 − q2

0)ikλσ3(Y −1
± ψ), z �= ±iq0, (3.5)

from which we can derive the solution of the asymptotic spectral problem (2.8)

ψ(x, t, z) =

{
Y±eiθ(z)σ3 , z �= ±iq0,
I + (x − 3q2

0t)Y±(z), z = ±iq0,
(3.6)

where
θ(x, t, z) = −k(z)λ(z)[x + (2k2(z) − q2

0)t].

For convenience, we will omit x and t dependence in θ(x, t, z) henceforth.
We define the Jost eigenfunctions φ±(x, t, z) as the simultaneous solutions of both parts of the Lax

pair so that
φ± = Y±eiθ(z)σ3 + o(1), x → ±∞. (3.7)

We introduce modified eigenfunctions by factorizing the asymptotic exponential oscillations

μ± = φ±e−iθ(z)σ3 ; (3.8)

then, we have
μ± ∼ Y±, x → ±∞.

Meanwhile, μ± acquire the equivalent Lax pair

(Y −1
± μ±)x − ikλ[Y −1

± μ±, σ3] = Y −1
± ΔX±μ±, (3.9)

(Y −1
± μ±)t − ikλ(2k2 − q2

0)[Y −1
± μ±, σ3] = Y −1

± ΔT±μ±, (3.10)

where ΔX± = X − X± and ΔT± = T − T±. These two equations can be written in full derivative form

d(e−iθ(z)σ̂3Y −1
± μ±) = e−iθ(z)σ̂3 [Y −1

± (ΔX±dx + ΔT±dt)μ±], (3.11)

which leads to the Volterra integral equations

μ±(x, t, z) =

⎧⎪⎪⎨
⎪⎪⎩

Y± +
x∫

±∞
Y±e−ikλ(x−y)σ̂3 [Y −1

± ΔX±(y, t)μ±(y, t, z)]dy, z �= ±iq0,

Y± +
x∫

±∞
[I + (x − y)X±(z)]ΔX±(y, t)μ±(y, t, z)dy, z = ±iq0,

(3.12)

where we define eασ̂A := eασAe−ασ, for a matrix A.

Proposition 1. Suppose q(x, t) − q± ∈ L1(R±), then the Volterra integral equation (3.12) has unique
solutions μ±(x, t, z) defined by (3.8) in Σ0 := Σ \ {±iq0}. Moreover, the columns μ−,1 and μ+,2 can be
analytically extended to D+ and continuously extended to D+ ∪ Σ0, while the columns μ+,1 and μ−,2 can
be analytically extended to D− and continuously extended to D− ∪Σ0, where μ±,j(x, t, z)(j = 1, 2) denote
the j-th column of μ±.

Proof. We can define μ± = (μ±,1, μ±,2) to rewrite columns of μ±. Since x − y > 0, for μ−, letting
W (x, z) = Y −1

− μ−, then the first column w of W is

w(x, z) =
(

1
0

)
+

x∫
−∞

G(x − y, z)ΔX−(y)Y−(y)w(y, z)dy, (3.13)
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where

G(x − y, z) = diag(1, e2ikλ(x−y))Y −1
− (z) =

1
γ

(
1 iq−

z
iq∗

−
z e2ikλ(x−y) e2ikλ(x−y)

)
. (3.14)

Now we introduce a Neumann series representation for w:

w(x, z) =
∞∑

n=0

w(n), (3.15)

with w(0) =
(

1
0

)
, w(n+1)(x, z) =

x∫
−∞

C(x, y, z)w(n)(y, z)dy, and where C(x, y, z) = G(x − y, z)ΔX−Y−.

Introducing the L1 vector norm ‖w‖ = |w1| + |w2| and the corresponding subordinate matrix norm ‖C‖,
we have

‖w(n+1)(x, z)‖ ≤
x∫

−∞
‖C(x, y, z)‖‖w(n)(y, z)‖dy. (3.16)

Note that ‖Y±‖ = 1 + q0/|z| and ‖Y −1
± ‖ = (1 + q0/|z|)/|1 + q2

0/z2|. The properties of the matrix norm
imply

‖C(x, y, z)‖ ≤ ‖diag(1, e2ikλ(x−y))‖‖Y−‖‖ΔX−(y)‖‖Y −1
− ‖

≤ c(z)(1 + e−2Im(kλ)(x−y))(|k||q(y) − q−| +
∣∣|q|2 − q2

0

∣∣), (3.17)

where c(z) = ‖Y−‖‖Y −1
− ‖ = (1 + q0/|z|)2/|1 + q2

0/z2|. Recall that Im(kλ) > 0 for z ∈ D+. For any ε > 0,
let D+

ε := D+ \ (Bε(iq0) ∪ Bε(−iq0)), where Bε(±iq0) = {z ∈ C : |z ∓ iq0| < εq0}. Then, we have

cε = max
z∈D+

ε

c(z) = 2 +
2
ε
. (3.18)

Then, we prove that, for all z ∈ D+
ε and for all n ∈ N,

‖w(n)(x, z)‖ ≤ Mn(x)
n!

, (3.19)

where

M(x) = 2cε

x∫
−∞

(|k||q(y) − q−| +
∣∣|q|2 − q2

0

∣∣)dy. (3.20)

We will prove the result by induction. The claim is trivially true for n = 0. For all z ∈ D+ and for all
y ≤ x, we have 1 + e−2Im(kλ)(x−y) ≤ 2. If (3.19) holds for n = j, (3.16) implies

‖w(j+1)(x, z)‖ ≤ 2cε

j!

x∫
−∞

(
∣∣|k|q(y) − q−

∣∣ +
∣∣|q|2 − q2

0)M j(y)dy =
M j+1(x)
(j + 1)!

. (3.21)

Thus, for ε > 0, if q(x) − q− ∈ L1(−∞, a) for some a ∈ R, then |q(x)|2 − q2
0 ∈ L1(−∞, a) because of the

boundedness of q(x). The Neumann series converges absolutely and uniformly with respect to x ∈ (−∞, a)
and z ∈ D+

ε . Since a uniformly convergent series of analytic functions converges to an analytic function,
this demonstrates that the corresponding column of the Jost solution is analytic in this domain. �

Corollary 1. Suppose q(x, t)−q± ∈ L1(R±), then the Volterra integral equation (2.7) has unique solutions
μ±(x, t, z) defined by (3.7) in Σ0. Moreover, the columns φ−,1 and φ+,2 can be analytically extended to
D+ and continuously extended to D+ ∪ Σ0, while the columns φ+,1 and φ−,2 can be analytically extended
to D− and continuously extended to D− ∪ Σ0, where φ±,j(x, t, z)(j = 1, 2) denote the j-th column of φ±.
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Proposition 2. Suppose (1 + |x|)(q(x, t) − q±) ∈ L1(R±), then the Volterra integral equation (3.12) has
unique solutions μ±(x, t, z) defined by (3.8) in Σ. Besides, the columns μ−,1 and μ+,2 can be analytically
extended to D+ and continuously extended to D+∪Σ, while the columns μ+,1 and μ−,2 can be analytically
extended to D− and continuously extended to D− ∪ Σ.

Proof. Note that at the branch points z = ±iq0, we have det(Y±(x, t)) = 0, which means that Y±(x, t)
have no inverse at the branch points. However, if (1 + |x|)(q(x, t) − q±) ∈ L1(R), the integral equations
have well-defined limits as z → ±iq0. To see this, for z �= ±iq0,

Y±e−ikλ(x−y)σ3Y −1
± =

1
kλ

sin(kλ(x − y))X± + cos(kλ(x − y))I. (3.22)

As z → ±iq0, kλ → 0, the limit of the right-hand side is I + (x − y)X±(z), implying

μ±(x, t, z) = Y± +

x∫
±∞

[I + (x − y)X±(z)]ΔX±(y, t)μ±(y, t, z)dy, z = ±iq0. (3.23)

Then, we have

μ+,1(x, t, z) =
(

1
eiθ+

)
−

+∞∫
x

[I + (x − y)X+(z)]ΔX+(y, t)μ+,1(y, t, z)dy, z = ±iq0. (3.24)

where θ+ = arg(q+). Using the same technique in the proof of Proposition 1, we can finish the proof. �

Corollary 2. Suppose (1+ |x|)(q(x, t)−q±) ∈ L1(R±), then the Volterra integral equation (2.7) has unique
solutions φ±(x, t, z) defined by (3.7) in Σ. Besides, the columns φ−,1 and φ+,2 can be analytically extended
to D+ and continuously extended to D+∪Σ, while the columns φ+,1 and φ−,2 can be analytically extended
to D− and continuously extended to D− ∪ Σ.

Lemma 1. Consider an n-dimensional first-order homogeneous linear ordinary differential equation,
dy(x)/dx = A(x)y(x), on an interval D ∈ R, where A(x) denotes a complex square matrix of order
n. Let Φ be a matrix-valued solution of this equation. If the trace trA(x) is a continuous function, then
one has

det Φ(x) = det Φ(x0) exp

⎡
⎣

x∫
x0

trA(ξ)dξ

⎤
⎦ , x, x0 ∈ D. (3.25)

Proposition 3. The Jost solutions Φ(x, t, z) are the simultaneous solutions of both parts of the Lax pair
(2.7).

4. Scattering matrix

Since trX = trT = 0 in (2.7), then by using Abel formula, we have

(det φ±)x = (det φ±)t = 0, det(μ±) = det(φ±e−iθ(z)σ3) = det(φ±),

so that (det μ±)x = (det μ±)t = 0, which means det(μ±) is independent with x, t. Furthermore, we know
that μ± is invertible from

det μ± = lim
x→±∞ det(μ±) = det Y± = γ �= 0, x, t ∈ R, z ∈ Σ0. (4.1)

Since φ± are two fundamental matrix solutions of the linear Lax pair (2.7), there exists a relation
between φ+ and φ−

φ+(x, t, z) = φ−(x, t, z)S(z), x, t ∈ R, z ∈ Σ0, (4.2)
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where S(z) is called scattering matrix and (4.1) implies that detS(z) = 1. Letting S(z) = (sij), for the
individual columns

φ+,1 = s11φ−,1 + s21φ−,2, φ+,2 = s12φ−,1 + s22φ−,2. (4.3)

By using (4.2), we obtain

s11(z) =
Wr(φ+,1, φ−,2)

γ
, s12(z) =

Wr(φ+,2, φ−,2)
γ

, (4.4)

s21(z) =
Wr(φ−,1, φ+,1)

γ
, s22(z) =

Wr(φ−,1, φ+,2)
γ

. (4.5)

Proposition 4. Suppose q(x, t) − q± ∈ L1(R±). Then, s11 can be analytically extended to D− and contin-
uously extended to D− ∪ Σ0, while s22 can be analytically extended to D+ and continuously extended to
D+ ∪ Σ0. Moreover, s12 and s21 are continuous in Σ0.

Corollary 3. Suppose (1 + |x|)(q(x, t) − q±) ∈ L1(R±). Then, λ(z)s11(z) can be analytically extended to
D− and continuously extended to D− ∪ Σ, while s22 can be analytically extended to D+ and continuously
extended to D+ ∪ Σ. Moreover, λ(z)s12 and λ(z)s21 are continuous in Σ.

Note that we cannot exclude the possible existence of zeros for s11(z) and s22(z) along Σ0. To solve
the Riemann–Hilbert problem, we restrict our consideration to potentials without spectral singularities,
i.e., s11(z) �= 0, s22(z) �= 0 for z ∈ Σ. Besides, we assume that the scattering coefficients are continuous
at the branch points. The reflection coefficients which will be needed in the inverse problem are

ρ(z) =
s21

s11
, ρ̃(z) =

s12

s22
. (4.6)

5. Symmetry

For the GI equation with nonzero boundary, we not only need to deal with the map k �→ k∗, but also
need to pay attention to the sheets of the Riemann surface. We can see from the Riemann surface that
the transformation z �→ z∗ implies (k, λ) �→ (k∗, λ∗) and z �→ −q2

0/z implies (x, λ) �→ (k,−λ). Therefore,
we would like to discuss the symmetries in the following way.

Proposition 5. The Jost solution, scattering matrix and reflection coefficients satisfy the following reduc-
tion conditions on z-plane

• The first symmetry reduction

φ±(x, t, z) = σ2φ
∗
±(x, t, z∗)σ2, S(z) = σ2S

∗(z∗)σ2, ρ(z) = −ρ̃∗(z∗), (5.1)

where σ2 =
(

0 −i
i 0

)
.

• The second symmetry reduction

φ±(x, t, z) = σ1φ
∗
±(x, t,−z∗)σ1, S(z) = σ1S

∗(−z∗)σ1, ρ(z) = ρ̃∗(−z∗), (5.2)

where σ1 =
(

0 1
1 0

)
.

• The third symmetry reduction

φ±(x, t, z) = − i

z
φ±(x, t,−q2

0

z
)σ3Q±, (5.3)

S(z) = (σ3Q−)−1S(−q2
0

z
)σ3Q+, ρ(z) =

q−
q∗−

ρ̃(−q2
0

z
). (5.4)
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Proof. Let φ(x, t, z) be a solution of the scattering problem (2.7), so we have

φx = Xφ = (−ik2σ3 +
i

2
(|q|2 − q2

0)σ3 + kQ)φ. (5.5)

Replacing z with z∗, conjugating both sides at the same time and then premultiplying both sides by σ2,
we get the equation

σ2φ
∗
x(x, t, z∗) =

(
ik∗2(z∗)σ2σ3 − i

2
(|q|2 − q2

0)σ2σ3 + k∗(z∗)σ2Q
∗
)

φ∗(x, t, x∗). (5.6)

Because of k∗(z∗) = k(z), σ2σ3σ
−1
2 = −σ3, and σ2Q

∗σ−1
2 = Q, the above equation then becomes

σ2φ
∗
x(x, t, z∗) =

(
−ik2(z)σ3 +

i

2
(|q|2 − q2

0)σ3 + k(z)Q
)

(σ2φ
∗(z∗)). (5.7)

Hence, σ2φ
∗(x, t, z∗) is also the solution of the scattering problem (2.7), so is σ2φ

∗(x, t, z∗)C, where C is
an arbitrary 2 × 2 matrix.

Letting z ∈ C \ Σ, with θ∗(z∗) = θ(z) and σ2Y
∗
±(z∗) = σ2(I + iσ3Q

∗
±/z) = Y±σ2, we can derive that

σ2φ
∗
±(x, t, z∗)σ2 = −Y±(x, t, x)eiθ(z)σ3 + O(1), x → ±∞. (5.8)

From the uniqueness of the solution of the scattering problem, we can get the conclusion that

− σ2φ
∗
±(x, t, z∗)σ2 = φ±. (5.9)

This is exactly what the first equation of (5.1) says. Using similar method, with symmetries θ∗(−z∗) =
θ(z), σ1σ3σ

−1
1 = −σ3 and σ1Q

∗σ1 = −Q, we can easily get the second symmetry of φ±(x, t, z).
Next, we show the equation in (5.2). If φ(x, t, z) is a solution of the scattering problem (2.7), since

k

(
−q2

0

z

)
=

1
2

(
−q2

0

z
+ z

)
= k(z), (5.10)

so is φ(x, t,− q2
0
z ) and φ(x, t,− q2

0
z )C, for any 2 × 2 matrix C independent of t. With θ(− q2

0
z ) = −θ(z), it is

apparent that

φ±

(
x, t,−q2

0

z

)
C = Y±

(
−q2

0

z

)
e−iθ(z)σ3C. (5.11)

Note that

− i

z
Y±

(
−q2

0

z

)
e−iθσ3σ3Q± = Y±(z)eiθσ3 ,

and taking C = − i
z σ3Q±, we get the symmetry

− i

z
φ

(
x, t,−q2

0

z

)
σ3Q± = Y±eiθσ3 .

What will come next are the symmetries of scattering matrix. For the individual columns, the above
symmetries come to

φ±,1(x, t, z) = iσ2φ
∗
±,2(x, t, z∗), φ±,2(x, t, z) = −iσ2φ

∗
±,1(x, t, z∗), (5.12)

φ±,1(x, t, z) = − i

z
q∗
±φ±,2

(
−q2

0

z

)
, φ±,2(x, t, z) = − i

z
q±φ±,1

(
−q2

0

z

)
. (5.13)

Substituting the first one of (5.1) into (4.2), we obtain a symmetry of scattering matrix

S∗(z∗) = σ2S(z)σ2, (5.14)

closely followed by the relations between the scattering coefficients

s11(z) = s∗
22(z

∗), s12(z) = −s∗
21(z

∗). (5.15)
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Similarly, we can get S(z) = σ1S
∗(−z∗)σ1, which leads to

s11(z) = s∗
22(−z∗), s12(z) = s∗

21(−z∗). (5.16)

Substituting (5.2) in (4.2), we obtain another symmetry of the scattering matrix

S

(
−q2

0

z

)
= σ3Q−S(z)(σ3Q+)−1, (5.17)

which is also followed by the relations between the scattering coefficients

s11(z) =
q∗
+

q∗−
s22

(
−q2

0

z

)
, s12(z) =

q+

q∗−
s21

(
−q2

0

z

)
, (5.18)

s21(z) =
q∗
+

q−
s12

(
−q2

0

z

)
, s22(z) =

q+

q−
s11

(
−q2

0

z

)
. (5.19)

Combining (5.14) with (5.17), we then get

S∗(z∗) = σ2(σ3Q−)−1S

(
−q2

0

z

)
σ3Q+σ2. (5.20)

Elementwise,

s∗
11(z

∗) =
q+

q−
s11

(
−q2

0

z

)
, s∗

12(z
∗) = −q∗

+

q−
s12

(
−q2

0

z

)
, (5.21)

s∗
21(z

∗) = −q+

q∗−
s21

(
−q2

0

z

)
, s∗

22(z
∗) =

q∗
+

q∗−
s22

(
−q2

0

z

)
. (5.22)

Finally, all the above symmetries then give the symmetries for the reflection coefficients

ρ(z) = ρ̃∗(−z∗) = −ρ̃∗(z∗) =
q−
q∗−

ρ̃(−q2
0

z
) = −q∗

−
q−

ρ∗(− q2
0

z∗ ). (5.23)

From (5.23), we can also get an important symmetry

ρ(z) = −ρ(−z). (5.24)

So we have done the proof. �

6. Discrete spectrum and residue conditions

The discrete spectrum of the scattering problem is the set of all values z ∈ C\Σ, for which eigenfunctions
exist in L2(R). We would like to show that these values are the zeros of s11(z) in D− and those of s22(z)
in D+.

We can show that the uniformization transformation (2.13) changes the segment [−iq0, iq0] on k-plane
into the circle |z| = q0 on z-plane. We suppose that s22 has N1 simple zeros z1, . . . , zN1 in D+ ∩ {z ∈ C :
Imz > 0, |z| > q0}, and N2 simple zeros w1, . . . , wm in {z = q0eiϕ : 0 < ϕ < π

2 }, that is, s22(z) = 0 and
s22

′(z) �= 0 if z is a simple zero of s22. Then, symmetries (5.1)–(5.19) imply that

s22(±zn) = 0 ⇔ s∗
11(±z∗

n) = 0 ⇔ s11

(
± q2

0

zn

)
= 0 ⇔ s22

(
± q2

0

z∗
n

)
= 0, n = 1, . . . , N1, (6.1)

and
s22(±wm) = 0 ⇔ s∗

11(±w∗
m) = 0. m = 1, . . . , N2. (6.2)

Therefore, the discrete spectrum is the set

Z =
{

±zn,±z∗
n,± q2

0

zn
,± q2

0

z∗
n

}N1

n=1

⋃
{±wm,±w∗

m}N2
m=1 , (6.3)
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Fig. 2. Distribution of the discrete spectrum and the contours for the Riemann–Hilbert problem on complex z-plane

which can be seen in Fig. 2.
If s11(z) = 0 at z = z∗

n, from the first of (4.4), the eigenfunction φ+,1 and φ−,2 must be proportional
at z∗

n

φ+,1(x, t, z∗
n) = bnφ−,2(x, t, z∗

n), bn �= 0 independent of x, t, z. (6.4)

Then, we would like to derive the residue conditions which will be needed for the Riemann–Hilbert
problem.

Owing to (6.4), we have μ+,1(x, t, z∗
n) = bne−2iθ(z∗

n)μ−,2(x, t, z∗
n). As a result,

Res
z=z∗

n

[
μ+,1(x, t, z)

s11(z)

]
= lim

z→z∗
n

(z − z∗
n)

μ+,1(x, t, z)
s11(z)

= Cne−2iθ(z∗
n)μ−,2(x, t, z∗

n), (6.5)

where Cn = bn

s11′(z∗
n) .

If s11(−z∗
n) = 0, with the symmetries (5.2), (5.1), and (4.4), we get

φ+,1(x, t,−z∗
n) = −bnφ−,2(x, t,−z∗

n) (6.6)

φ−,2(x, t,−z∗
n) = −σ3φ−,2(x, t, z∗

n), (6.7)

which also mean

μ+,1(x, t,−z∗
n) = −bne−2iθ(−z∗

n)μ−,2(x, t,−z∗
n) (6.8)

μ−,2(x, t,−z∗
n) = −σ3μ−,2(x, t, z∗

n). (6.9)

Owing to (6.1), we have (s11(−z∗
n))′ = −s′

11(z
∗
n). It is obvious that

Res
z=−z∗

n

[
μ+,1(x, t, z)

s11(z)

]
=

−bne−2iθ(−z∗
n)μ−,2(x, t,−z∗

n)
−s′

11(z∗
n)

= −Cne−2iθ(z∗
n)σ3μ−,2(x, t, z∗

n), (6.10)

because of θ(−z∗
n) = θ(z∗

n).
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If s22(zn) = 0, then
φ+,2(x, t, zn) = b̃nφ−,1(x, t, zn); (6.11)

in other words, it is μ+,2(x, t, zn) = b̃ne2iθ(zn)μ−,1(x, t, zn). In that way, we can derive that

Res
z=zn

[
μ+,2(x, t, z)

s22(z)

]
= C̃ne2iθ(zn)μ−,1(x, t, zn), (6.12)

where C̃n = b̃n

s′
22(zn) . If s22(−zn) = 0, also from (5.1), (5.2) and (4.5) we can get

φ−,1(x, t,−zn) = σ3φ−,1(x, t, zn), (6.13)

φ+,2(x, t,−zn) = −b̃nφ−,1(x, t,−zn), (6.14)

which also mean

μ−,1(x, t,−zn) = σ3μ−,1(x, t, zn), (6.15)

μ+,2(x, t,−zn) = −b̃ne2iθ(−zn)μ−,1(x, t,−zn). (6.16)

With (6.1), we have (s22(−zn))′ = −s′
22(zn). Similarly, we can get the residue

Res
z=−zn

[
μ+,2(x, t, z)

s22(z)

]
= C̃ne2iθ(zn)σ3μ−,1(x, t, zn). (6.17)

Because of the symmetries, we can get the relations between the norming constants. Using the two
equations in (5.12) and comparing with (6.11), we know that b̃n = −b∗

n. It is clear that (6.1) implies
s′
22(zn) = (s∗

11(z
∗
n))′, so we have

C̃n =
b̃n

s′
22(zn)

= − b∗
n

(s∗
11(z∗

n))′ = −C∗
n. (6.18)

Substituting (5.13) in (6.4) and (6.11), we obtain

φ+,2

(
x, t,− q2

0

z∗
n

)
=

q−
q∗
+

bnφ−,1

(
− q2

0

z∗
n

)
, (6.19)

φ+,1

(
x, t,− q2

0

zn

)
=

q∗
−

q+
b̃nφ−,2

(
− q2

0

zn

)
, (6.20)

From (5.13), (6.6) and (6.14), we get

φ+,2

(
x, t,

q2
0

z∗
n

)
= −q−

q∗
+

bnφ−,1

(
q2
0

z∗
n

)
, (6.21)

φ+,1

(
x, t,

q2
0

zn

)
= −q∗

−
q+

b̃nφ−,2

(
q2
0

zn

)
. (6.22)

Furthermore, from the symmetries of the scattering coefficients (5.17) and (5.20), we get the relation

s11

(
− q2

0

zn

)
=

q−
q+

s∗
11(z

∗
n). (6.23)

By differentiating the above equation, we have

s′
11

(
− q2

0

zn

)
=

(
zn

q0

)2
q−
q+

(s∗
11(z

∗
n))′. (6.24)

Similarly,

s′
11

(
q2
0

zn

)
= −

(
zn

q0

)2
q−
q+

(s∗
11(z

∗
n))′, (6.25)
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s′
22

(
− q2

0

z∗
n

)
=

(
z∗
n

q0

)2 (
q−
q+

)∗
(s∗

22(zn))′, (6.26)

s′
22

(
q2
0

z∗
n

)
= −

(
z∗
n

q0

)2 (
q−
q+

)∗
(s∗

22(zn))′, (6.27)

Finally, combining the above relations, we get

Res
z=− q20

zn

[
μ+,1(x, t, z)

s11(z)

]
= CN1+ne−2iθ(− q20

zn
)μ−,2

(
x, t,− q2

0

zn

)
, (6.28)

Res
z=− q20

z∗
n

[
μ+,2(x, t, z)

s22(z)

]
= C̃N1+ne

2iθ

(
− q20

z∗
n

)
μ−,1

(
x, t,− q2

0

z∗
n

)
, (6.29)

Res
z=

q20
zn

[
μ+,1(x, t, z)

s11(z)

]
= −CN1+ne

−2iθ

(
− q20

zn

)
σ3μ−,2

(
x, t,− q2

0

zn

)
, (6.30)

Res
z=

q20
z∗

n

[
μ+,2(x, t, z)

s22(z)

]
= C̃N1+ne

2iθ

(
− q20

z∗
n

)
σ3μ−,1

(
x, t,− q2

0

z∗
n

)
. (6.31)

where

CN1+n =
q∗
−

q−

(
q0

zn

)2

C̃n, C̃N1+n =
(

q0

z∗
n

)2
q−
q∗−

Cn, (6.32)

with the relation
C̃N1+n = −C∗

N1+n, (6.33)
for n = 1, . . . , N1.

Analogously, we get the residue conditions at ±wm and ±w∗
m,

Res
z=w∗

m

μ+,1(x, t, z)
s11(z)

= C2N1+me−2iθ(w∗
m)μ−,2(x, t, w∗

m), (6.34)

Res
z=−w∗

m

μ+,1(x, t, z)
s11(z)

= −C2N1+me−2iθ(w∗
m)σ3μ−,2(x, t, w∗

m), (6.35)

Res
z=wm

μ+,2(x, t, z)
s22(z)

= C̃2N1+me2iθ(wm)μ−,1(x, t, wm), (6.36)

Res
z=−wm

μ+,2(x, t, z)
s22(z)

= C̃2N1+me2iθ(wm)σ3μ−,1(x, t, wm), (6.37)

where C2N1+m = b2N1+m

s′
11(w

∗
m) , C̃2N1+m = −C∗

2N1+m and b2N1+m is independent of x, t for m = 1, . . . , N2.

7. Asymptotic behaviors

To solve the Riemann–Hilbert problem in the next section, it is necessary to discuss the asymptotic
behaviors of the modified Jost solutions and scattering matrix as z → ∞ and z → 0 by the standard
Wentzel–Kramers–Brillouin (WKB) expansions.

Proposition 6. The asymptotic behaviors for the modified Jost solutions are given as

μ±(x, t, z) = I + o(z−1), z → ∞, (7.1)

μ±(x, t, z) = − i

z
σ3Q± + o(1), z → 0. (7.2)
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Proof. We consider the following ansatz for the expansions of the modified Jost solutions μ±(x, t, z) as
z → ∞ and z → 0

μ±(x, t, z) = μ
(0)
± (x, t) +

μ
(1)
± (x, t)

z
+

μ
(2)
± (x, t)

z2
+ o(z−3), as z → ∞, (7.3)

μ±(x, t, z) =
μ̃

(−1)
± (x, t)

z
+ μ̃

(0)
± (x, t) + μ̃

(1)
± (x, t)z + o(z2), as z → 0. (7.4)

Substitute the above expansions into the Lax equation (3.9), and let Ad and Ao denote, respectively, the
diagonal and off-diagonal parts of the matrix A. As z → ∞, we have

[(
I +

i

z
σ3Q±)(μ

(0)
± +

μ
(1)
±
z

+
μ
(2)
±
z2

+ · · ·
)]

x

=
i

4

(
z2 − q40

z2

)[(
I +

i

z
σ3Q±

)(
μ
(0)
± +

μ
(1)
±
z

+
μ
(2)
±
z2

+ · · ·
)

, σ3

]
(7.5)

+ (I +
i

z
σ3Q±)

[ i

2
(|q|2 − q20)σ3 +

1

2
(z − q20

z
)ΔQ±

]
(μ

(0)
± +

μ
(1)
±
z

+
μ
(2)
±
z2

+ · · · ). (7.6)

By matching the O(z2) terms, we obtain that

[μ(0)
± , σ3] = 0,

which means that μ
(0)
± is a diagonal matrix. We record it as

μ
(0)
± =

(
a(x) 0

0 b(x)

)
.

By matching the O(z) terms, we obtain that

i

4
[μ(1)

± , σ3] − 1
4
[σ3Q±μ

(0)
± , σ3] +

1
2
ΔQ±μ

(0)
± = 0; (7.7)

then, we can get the off-diagonal part of μ
(1)
±

μ
(1)
±,o =

(
0 −ib(x)q

−ia(x)q∗ 0

)
. (7.8)

By matching the O(1) terms, we obtain that

μ
(0)
±,x =

i

4
[μ(2)

± , σ3] +
i

4
[iσ3Q±μ

(0)
± , σ3] +

i

2
(|q|2 − q2

0)σ3μ
(0)
± +

1
2
ΔQ±μ

(1)
± +

i

2
σ3Q±μ

(0)
± . (7.9)

The left-hand side of (7.9) is a diagonal matrix, and the first two parts of the right-hand side are off-
diagonal matrix, so we can just calculate the last three parts in the right-hand side. By calculating, we
get (

ax 0
0 bx

)
= 0, (7.10)

so that
μ

(0)
± = C, (7.11)

where C is a constant matrix. To find out the exact value of C, we see that

lim
x→±∞ μ± = Y± = I − i

z
σ3Q± = lim

x→±∞(μ(0)
± + · · · ), (7.12)

so that C = I. Therefore, we get the asymptotic behavior of the modified Jost solution

μ±(x, t, z) = I + O(z−1), z → ∞,

When z → 0, by matching the O(z−4) terms, we obtain that

[σ3Q±μ̃
(−1)
± , σ3] = 0, (7.13)
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that is to say the diagonal part of μ
(−1)
± is 0, so we can record it as

μ̃
(−1)
± =

(
ã(x)

b̃(x)

)
. (7.14)

By matching the O(z−3) terms, we obtain that

μ̃
(0)
±,d =

(
ib̃ q

q2
0

iã q∗

q2
0
.

)
(7.15)

By matching the O(z−2) terms, we obtain that μ̃
(−1)
± = C̃, where C̃ is a constant matrix. From the

expansion (7.4), we have

lim
x→±∞ zμ̃± = zY± = z

(
I − i

z
σ3Q±

)
= lim

x→±∞(μ̃(−1)
± + zμ̃

(0)
± + · · · ). (7.16)

Thereby, C̃ = −iσ3Q± and μ̃
(−1)
± = −iσ3Q±. Finally, we get the asymptotic behavior

μ±(x, t, z) = − i

z
σ3Q± + O(1), z → 0.

�

Inserting the above asymptotic behaviors for the modified Jost eigenfunctions into the Wronskian
representation (4.4) and (4.5), with a little calculations, we get the asymptotic behaviors of the scattering
matrix.

Proposition 7. The asymptotic behaviors of the scattering matrix are

S(z) = I + O(z−1), z → ∞, (7.17)

S(z) = diag
(

q−
q+

,
q+

q−

)
+ O(z), z → 0. (7.18)

Proof. From the representation of the scattering coefficients (4.4), (4.5) and the asymptotic behaviors,
we have

s11 =
Wr(φ+,1, φ−,2)

γ
= det

(
1 + O(z−1) O(z−1)

O(z−1) 1 + O(z−1)

)(
1 − q2

0

z2
+

q4
0

z4
+ · · ·

)

= (1 + O(z−1))
(

1 − q2
0

z2
+

q4
0

z4
+ · · ·

)

= 1 + O(z−1).

Similarly,

s22 =
Wr(φ−,1, φ+,2)

γ
= 1 + O(z−1).

Hence, we have the asymptotic behavior (7.17).
As z → 0

s11 =
Wr(φ+,1, φ−,2)

γ
= det

(
O(1) − i

z q− + O(1)
− i

z q∗
+ + O(1) O(1)

)(
z2

q2
0

− z4

q4
0

+ · · ·
)

=
q−
q+

+ O(z).

s22 =
q+

q−
+ O(z).

Therefore, we obtain the asymptotic behavior (7.18). �
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8. Riemann–Hilbert problem

As we all know, the equation (4.2) is the beginning of the formulation of the inverse problem. We always
regard it as a relation between eigenfunctions analytic in D+ and those analytic in D−. Thus, it is
necessary for us to introduce the following Riemann–Hilbert problem.

Proposition 8. Define the sectionally meromorphic matrix

M(x, t, z) =

{
M− =

( μ+,1

s11
μ−,2

)
, as z ∈ D−,

M+ =
(

μ−,1
μ+,2

s22

)
, as z ∈ D+.

(8.1)

Then, a multiplicative matrix Riemann–Hilbert problem is proposed:
• Analyticity: M(x, t, z) is analytic in C \ Σ and has single poles.
• Jump condition

M−(x, t, z) = M+(x, t, z)(I − G(x, t, z)), z ∈ Σ, (8.2)

where

G(x, t, z) =
(

ρ(z)ρ̃(z) e2iθρ̃(z)
−e−2iθρ(z) 0

)
. (8.3)

• Asymptotic behaviors

M(x, t, z) ∼ I + O(z−1), z → ∞, (8.4)

M(x, t, z) ∼ − i

z
σ3Q− + O(1), z → 0. (8.5)

Proof. The analyticity can be find out from (4.3) and the analyticity of the modified Jost solution μ±.
Also from (4.3), we get

μ−,2(x, t, z) = −ρ̃(z)e2iθμ−,1(x, t, z) +
μ+,2(x, t, z)

s22(z)
, (8.6)

μ+,1(x, t, z)
s11(z)

= μ−,1(x, t, z) + ρ(z)μ−,2(x, t, z)

= (1 − ρ(z)ρ̃(z))μ−,1(x, t, z) + ρ(z)e−2iθ μ+,2(x, t, z)
s22(z)

, (8.7)

which result in the jump condition.
Next we discuss the asymptotic behaviors. With the above asymptotic behaviors of the modified Jost

solution and scattering matrix, we can derive that as z → ∞,

M−(x, t, z) ∼ I + O(z−1), (8.8)

M+(x, t, z) ∼ I + O(z−1). (8.9)

Thus, we derived the asymptotic behavior (8.4). Similarly, we can get another asymptotic behavior (8.5)
immediately. �

Solving the above Riemann–Hilbert problem requires us to regularize it by subtracting out the asymp-
totic behaviors and the pole contributions. It is convenient to define

ζn =

⎧⎪⎨
⎪⎩

zn, n = 1, . . . , N1,

− q2
0

z∗
n−N1

, n = N1 + 1, . . . , 2N1,

wn−2N1 , n = 2N1 + 1, . . . , 2N1 + N2,

(8.10)
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and rewrite (8.2) as

M− − I +
i

z
σ3Q− −

2N1+N2∑
n=1

Res
ζ∗

n

M−

z − ζ∗
n

−
2N1+N2∑

n=1

Res
−ζ∗

n

M−

z + ζ∗
n

−
2N1+N2∑

n=1

Res
ζn

M+

z − ζn
−

2N1+N2∑
n=1

Res
−ζn

M+

z + ζn

= M+ − I +
i

z
σ3Q− −

2N1+N2∑
n=1

Res
ζ∗

n

M−

z − ζ∗
n

−
2N1+N2∑

n=1

Res
−ζ∗

n

M−

z + ζ∗
n

−
2N1+N2∑

n=1

Res
ζn

M+

z − ζn
−

2N1+N2∑
n=1

Res
−ζn

M+

z + ζn
− M+G.

(8.11)

Apparently, the left-hand side is analytic in D− and is O(z−1) as z → ∞, while the sum of the first
five terms of the right-hand side is analytic in D+ and is O(z−1) as z → ∞. In the end, the asymptotic
behavior of the off-diagonal scattering coefficients implies that G(x, t, z) is O(z−1) as z → ∞ and O(z)
as z → 0 along the real axis.

Using Plemelj’s formula, we finally get

M(x, t, z) = I − i

z
σ3Q− +

2N1+N2∑
n=1

Res
ζn

M+

z − ζn
+

2N1+N2∑
n=1

Res
ζ∗

n

M−

z − ζ∗
n

+
2N1+N2∑

n=1

Res
−ζn

M+

z + ζn
+

2N1+N2∑
n=1

Res
−ζ∗

n

M−

z + ζ∗
n

+
1

2πi

∫
Σ

M+(x, t, ζ)
ζ − z

G(x, t, z)dζ, z ∈ C \ Σ.

(8.12)

8.1. Residue conditions and reconstruction formula

Next, we need to derive an expression for the residues which are in (8.12). We know from the residue
relations (6.5), (6.10), (6.12), (6.17), (6.28)–(6.31) and (6.34)–(6.37) that only the second column of M+

has poles at ±zn, ± q2
0

z∗
n

and ±wm. Explicitly that is

Res
z=ζn

M+ =
(
0 C̃ne2iθ(ζn)μ−,1(x, t, ζn)

)
, n = 1, . . . , 2N1 + N2, (8.13)

Res
z=−ζn

M+ =
(
0 C̃ne2iθ(ζn)σ3μ−,1(x, t, ζn)

)
, n = 1, . . . , 2N1 + N2, (8.14)

Res
z=ζ∗

n

M− =
(
Cne−2iθ(ζ∗

n)μ−,2(x, t, ζ∗
n) 0

)
, n = 1, . . . , 2N1 + N2, (8.15)

Res
z=−ζ∗

n

M− =
(−Cne−2iθ(ζ∗

n)σ3μ−,2(x, t, ζ∗
n) 0

)
, n = 1, . . . , 2N1 + N2. (8.16)

Hence, we can calculate the second column of M+ at ζ∗
n and obtain

μ−,2(x, t, ζ∗
j ) =

(
− i

ζ∗
j
q−eiν−

e−iν−

)
+ 2

2N1+N2∑
k=1

C̃ke2iθ(ζk)

ζ∗2
j − ζ2

k

Zjkμ−,1(x, t, ζk)

+
1

2πi

∫
Σ

M+(x, t, ζ)
ζ − ζ∗

j

G(x, t, ζ)dζ,

(8.17)
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where Zjk =
(

ζ∗
j 0
0 ζk

)
, for j, k = 1, . . . , 2N1 + N2.

In the same way, we can evaluate the first column of M− at ζn and obtain

μ−,1(x, t, ζn) =
(

1
− i

ζn
q∗
−

)
+ 2

2N1+N2∑
j=1

Cje−2iθ(ζ∗
j )

ζ2
n − ζ∗2

j

Zjnμ−,2(x, t, ζ∗
j )

+
1

2πi

∫
Σ

M+(x, t, ζ)
ζ − ζn

G(x, t, ζ)dζ.

(8.18)

In the remaining parts of this section, we would like to give the reconstruction formula from the
solution of the Riemann–Hilbert problem. The solution (8.12) implies that

M(x, t, z) = I +
1
z

(
−iσ3Q− +

2N1+N2∑
n=1

(Res
z=ζn

M+ + Res
z=−ζn

M+ + Res
z=ζ∗

n

M−

+ Res
z=−ζ∗

n

M−) − 1
2πi

∫
Σ

M+(x, t, ζ)G(x, t, ζ)dζ

⎞
⎠ + O(z−2), z → ∞.

(8.19)

In the above equation, taking M = M− and comparing the (1,2) element with the same location of μ
(1)
−
z ,

using (7.8), we get the reconstruction formula for the potential

q(x, t) = q− + 2i

2N1+N2∑
n=1

C̃ne2iθ(ζn)μ−,11(ζn) − 1
2π

∫
Σ

(M+G)1,2(x, t, ζ)dζ. (8.20)

8.2. Trace formula and theta condition

Recall that the discrete spectrum is composed of ±ζn and ±ζ∗
n. Define the functions as follows:

β+(z) = s22(z)
2N1+N2∏

n=1

z2 − ζ∗2
n

z2 − ζ2
n

,

β−(z) = s11(z)
2N1+N2∏

n=1

z2 − ζ2
n

z2 − ζ∗2
n

.

(8.21)

From the analyticity of the scattering matrix, we see that the above functions are analytic and have no
zeros in D+ and D−, respectively. When z → ∞, β±(z) → 1. Moreover, β+(z)β−(z) = s11(z)s22(z).

Again detS(z) = 1 implies that

1
s11s22

=
s11s22 − s12s21

s11s22
= 1 − ρ(z)ρ̃(z) = 1 + ρ(z)ρ∗(z∗); (8.22)

thus,

β+(z)β−(z) =
1

1 + ρ(z)ρ∗(z∗)
, z ∈ Σ. (8.23)

Taking logarithms to the above relation and using the Plemelj’ formula, we have

log β±(z) = ∓ 1
2πi

∫
Σ

log[1 + ρ(ζ)ρ∗(ζ∗)]
ζ − z

dζ, z ∈ D±. (8.24)
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Substituting β+(z) for s11(z), we then obtain

s11(z) = exp

⎡
⎣− 1

2πi

∫
Σ

log[1 + ρ(ζ)ρ∗(ζ∗)]
ζ − z

dζ

⎤
⎦ 2N1+N2∏

n=1

z2 − ζ∗2
n

z2 − ζ2
n

, z ∈ D−, (8.25)

which is called trace formula and express the analytic scattering coefficient in terms of the discrete
eigenvalues and the reflection coefficient. In the same way, we can obtain s22(z)

s22(z) = exp

⎡
⎣ 1

2πi

∫
Σ

log[1 + ρ(ζ)ρ∗(ζ∗)]
ζ − z

dζ

⎤
⎦ 2N1+N2∏

n=1

z2 − ζ2
n

z2 − ζ∗2
n

, z ∈ D+. (8.26)

Recalling the asymptotic behavior of the scattering matrix and taking the limit z → 0 of (8.25), we
then obtain the so-called theta condition

arg
(

q−
q+

)
= 16

N1∑
n=1

arg(zn) + 8
N2∑

m=1

arg(wm) +
1
2π

∫
Σ

log[1 + ρ(ζ)ρ∗(ζ∗)]
ζ

dζ. (8.27)

9. Multi-soliton solutions

9.1. The formula for N -soliton solutions

Now we focus on the potentials q(x, t) with the reflection coefficient ρ(z) = 0. For convenience, denote

cj(x, t, z) =
Cj

z2 − ζ∗2
j

e−2iθ(x,t,ζ∗
j ), j = 1, . . . , 2N1 + N2. (9.1)

Observing (8.20), we find that only the first component of the eigenfunction is required in the reconstruc-
tion formula. So that we can derive

μ−,12(x, t, ζ∗
j ) = − i

ζ∗
j

q− −
2N1+N2∑

k=1

2ζ∗
j c∗

k(ζj)μ−,11(x, t, ζk), j = 1, . . . , 2N1 + N2, (9.2)

μ−,11(x, t, ζn) = 1 +
2N1+N2∑

j=1

2ζ∗
j cj(ζn)μ−,12(x, t, ζ∗

j ), n = 1, . . . , 2N1 + N2. (9.3)

Substituting (9.2) in (9.3), we get

μ−,11(x, t, ζn) = 1 − 2iq−
2N1+N2∑

j=1

cj(ζn) −
2N1+N2∑

j=1

2N1+N2∑
k=1

4ζ∗2
j cj(ζn)c∗

k(ζj)μ−,11(x, t, ζk), (9.4)

for n = 1, . . . , 2N1 + N2.
Next, to get the brief expression of the reflectionless potentials, we would like to write this system in

matrix form. Let
X = (X1, . . . , X2N1+N2)

t, B = (B1, . . . , B2N1+N2)
t,

where

Xn = μ−,11(x, t, ζn), Bn = 1 − 2iq−
2N1+N2∑

j=1

cj(ζn), n = 1, . . . , 2N1 + N2.

Define the (2N1 + N2) × (2N1 + N2) matrix A = (Ank), where

Ank =
2N1+N2∑

j=1

4ζ∗2
j cj(ζn)c∗

k(ζj), n, k = 1, . . . , 2N1 + N2.
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Then the system (9.4) becomes

PX = B,

where P = I + A = (P1, . . . ,P2N1+N2). The solution of the system is

Xn =
det P ext

n

det P
, n = 1, . . . , 2N1 + N2, (9.5)

where
P ext

n = (P1, . . . ,Pn−1,B,Pn+1, . . . ,P2N1+N2).

Therefore, putting the above X1, . . . , X2N1+N2 into the reconstruction formula, we then get the brief
expression for the potential

q(x, t) = q− − 2i
det P aug

det P
, (9.6)

where the (2N1 + N2 + 1) × (2N1 + N2 + 1) matrix is given as

P aug =
(

0 Yt

B M

)
, Y = (Y1, . . . , Y2N1+N2)

t,

and
Yn = C̃ne2iθ(x,t,ζn), n = 1, . . . , 2N1 + N2.

As applications of the N -soliton formula (9.6), we would like to consider the one-soliton solutions and
two-soliton solutions. Recall that the GI equation is invariant under scaling: If q(x, t) solves the equation,
so dose cq(x, t), for c ∈ R. This allows us to restrict ourselves to the case q0 = 1 without loss of generality.

9.2. One-soliton solutions for N = 1

� One-breather with parameters N1 = 1 and N2 = 0.
Let ζ1 = Zeiα, with Z > 1 and α ∈ (0, π

2 ), then the other points in discrete spectrum are ζ2 = − 1
Z eiα,

−ζ1 = −Zeiα, −ζ2 = 1
Z eiα, ζ∗

1 = Ze−iα, ζ∗
2 = − 1

Z e−iα, −ζ∗
1 = −Ze−iα and −ζ∗

2 = 1
Z e−iα. By using the

theta condition (8.27), we have
arg (q−/q+) = 16α.

We set q− = 1 and q+ = e−16iα. And we can also know that C1 = eξ+iϕ, with ξ, ϕ ∈ R and C2 =
− 1

Z2 eξ−i(2α+ϕ).
Substituting above data in formula (9.6), we get the one-soliton solution

q(x, t) = 1 − 2i

det

⎛
⎝ 0 Y1 Y2

B1 1 + A11 A12

B2 A21 1 + A22

⎞
⎠

det
(

1 + A11 A12

A21 1 + A22

) , (9.7)

where

θ(x, t, ζj) = −1
4
(ζ2

j − 1
ζ2
j

)(x + (
1
2
(ζ2

j +
1
ζ2
j

) − 2)t), j = 1, 2,

cj(x, t, z) =
Cj

z2 − ζ∗2
j

e−2iθ(x,t,ζ∗
j ), j = 1, 2,

Bn = 1 − 2iq−
2∑

j=1

cj(ζn), n = 1, 2,
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Fig. 3. One-breather with parameters N1 = 1, N2 = 0, z1 = 2e
π
6 i, C1 = i. a The three-dimensional graph of one-soliton

solution. b The contour of the wave. c Wave propagations along x−orientation with t = −20, 0 and t = 20. d Wave
propagation along t−orientation with x = 0

Ank =
2∑

j=1

4ζ∗2
j cj(ζn)c∗

k(ζj), n, k = 1, 2,

Yn = −C∗
ne2iθ(x,t,ζn), n = 1, 2.

The properties of the one-soliton solution are shown in Fig. 3.
� One-single soliton with parameters N1 = 0 and N2 = 1.

Let ζ1 = eiβ , with β ∈ (0, π
2 ), then the discrete spectrum can be expressed as {eiβ ,−eiβ , e−iβ ,−e−iβ}.

By using theta condition (8.27), we get

arg(q−/q+) = 8β. (9.8)
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Fig. 4. One-single soliton with parameters N1 = 0, N2 = 1, w1 = e
π
4 i, C1 = i. a The three-dimensional graph of one-soliton

solution. b The contour of the wave. c Wave propagations along x−orientation with t = −2, 0 and t = 2. d Wave propagation
along t−orientation with x = −2, 0 and t = 2

We set q− = 1 and then q+ = e−8iβ . Let C1 = eiτ+κ, with τ, κ ∈ R. Once again we get the soliton solution
with parameters N1 = 0 and N2 = 1

q(x, t) = 1 − 2i

det
(

0 Y
B 1 + A

)

1 + A
, (9.9)

where

θ(x, t, ζ1) = −1
2

sinh(2iβ)
(
x + (cosh(2iβ) − 2)t

)
,

c1(x, t, ζ1) =
eiτ+κ

sinh(2iβ)
e−2iθ(x,t,ζ∗

1 ),
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B = 1 − 2ic1(x, t, ζ1),

A = 4ζ∗2
1 c1(ζ1)c∗

1(ζ1),

Y = −C∗
1e2iθ(x,t,ζ1).

The properties of the one-soliton solution are shown in Fig. 4.

9.3. Two-soliton solutions for N = 2

� Two-breather with N1 = 1 and N2 = 1.
Let ζ1 = Zeiα with Z > 1 and α ∈ (0, π

2 ). Let ζ3 = eiβ , with β ∈ (0, π
2 ). By using the theta condition

(8.27), we have

arg (q−/q+) = 16α + 8β.

We set q− = 1 and q+ = e−8i(2α+β). And we can also know that C1 = eξ+iϕ, C3 = eiτ+κ, with τ, κ, ξ, ϕ ∈
R, then C2 = − 1

Z2 eξ−i(2α+ϕ). Substituting above data in formula (9.6), we get the two-soliton solution

q(x, t) = 1 − 2i

det

⎛
⎜⎜⎝

0 Y1 Y2 Y3

B1 1 + A11 A12 A13

B2 A21 1 + A22 A23

B3 A31 A32 A33 + 1

⎞
⎟⎟⎠

det

⎛
⎝1 + A11 A12 A13

A21 1 + A22 A23

A31 A32 1 + A33

⎞
⎠

, (9.10)

where

θ(x, t, ζj) = −1
4
(ζ2

j − 1
ζ2
j

)(x + (
1
2
(ζ2

j +
1
ζ2
j

) − 2)t), j = 1, 2, 3,

cj(x, t, z) =
Cj

z2 − ζ∗2
j

e−2iθ(x,t,ζ∗
j ), j = 1, 2, 3,

Bn = 1 − 2iq−
3∑

j=1

cj(ζn), n = 1, 2, 3,

Ank =
3∑

j=1

4ζ∗2
j cj(ζn)c∗

k(ζj), n, k = 1, 2, 3,

Yn = −C∗
ne2iθ(x,t,ζn), n = 1, 2, 3.

The properties of the two-soliton solution are shown in Fig. 5.
� Two-soliton with N1 = 2 and N2 = 0.

Let ζj = Zjeiαj , with j = 1, 2, Zj > 1 and αj ∈ (0, π
2 ). By using the theta condition (8.27), we have

arg (q−/q+) = 16(α1 + α2).
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Fig. 5. Two-breather with parameters N1 = 1, N2 = 1, w1 = e
π
4 i, z1 = 2e

π
6 i, C1 = C2 = C3 = i. a The three-dimensional

graph. b Then contour of the wave. c Wave propagations along x−orientation with t = 0. d Wave propagation along
t−orientation with x = 0

We set q− = 1 and q+ = e−16i(α1+α2). And we can also know that C1 = eξ+iϕ, C2 = eτ+iκ with
ξ, ϕ, τ, κ ∈ R. Substituting above data in formula (9.6), we get the two-soliton solution

q(x, t) = 1 − 2i

det

⎛
⎜⎜⎜⎜⎝

0 Y1 Y2 Y3 Y4

B1 1 + A11 A12 A13 A14

B2 A21 1 + A22 A23 A24

B3 A31 A32 1 + A33 A34

B4 A41 A42 A43 1 + A44

⎞
⎟⎟⎟⎟⎠

det

⎛
⎜⎜⎝

1 + A11 A12 A13 A14

A21 1 + A22 A23 A24

A31 A32 1 + A33 A34

A41 A42 A43 1 + A44

⎞
⎟⎟⎠

, (9.11)
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Fig. 6. Two-soliton with parameters N1 = 2, N2 = 0, z1 = 1 + 2i, z2 = 2 + i, C1 = C2 = i. a The three-dimensional graph.
b The contour of the wave. c Wave propagations along x−orientation with t = 0. d Wave propagation along t−orientation
with x = 0

where

θ(x, t, ζj) = −1
4
(ζ2

j − 1
ζ2
j

)(x + (
1
2
(ζ2

j +
1
ζ2
j

) − 2)t), j = 1, 2, 3, 4,

cj(x, t, z) =
Cj

z2 − ζ∗2
j

e−2iθ(x,t,ζ∗
j ), j = 1, 2, 3, 4,

Bn = 1 − 2iq−
4∑

j=1

cj(ζn), n = 1, 2, 3, 4,

Ank =
4∑

j=1

4ζ∗2
j cj(ζn)c∗

k(ζj), n, k = 1, 2, 3, 4,

Yn = −C∗
ne2iθ(x,t,ζn), n = 1, 2, 3, 4.
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Fig. 7. Two-soliton with parameters N1 = 0, N2 = 2, w1 = e
πi
6 , w2 = e

πi
4 , C1 = C2 = i. a The three-dimensional graph.

b The contour of the wave. c Wave propagations along x−orientation with t = 0. d Wave propagation along t−orientation
with x = 0

The properties of the one-soliton solution are shown in Fig. 6.
� Two-soliton solution with N1 = 0 and N2 = 2.

Let ζj = eiβj , with βj ∈ (0, π
2 ) and j = 1, 2. By using theta condition (8.27), we get

arg(q−/q+) = 8(β1 + β2). (9.12)

We set q− = 1 and then q+ = e−8i(β1+β2). Let C1 = eiτ+κ and C2 = eξ+iϕ, with τ, κ, ξ, ϕ ∈ R. Once again
we get the two-soliton solution with parameters N1 = 0 and N2 = 2

q(x, t) = 1 − 2i

det

⎛
⎝ 0 Y1 Y2

B1 1 + A11 A12

B2 A21 1 + A22

⎞
⎠

det
(

1 + A11 A12

A21 1 + A22

) , (9.13)
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where

θ(x, t, ζj) = −1
4
(ζ2

j − 1
ζ2
j

)(x + (
1
2
(ζ2

j +
1
ζ2
j

) − 2)t), j = 1, 2,

cj(x, t, z) =
Cj

z2 − ζ∗2
j

e−2iθ(x,t,ζ∗
j ), j = 1, 2,

Bn = 1 − 2iq−
2∑

j=1

cj(ζn), n = 1, 2,

Ank =
2∑

j=1

4ζ∗2
j cj(ζn)c∗

k(ζj), n, k = 1, 2,

Yn = −C∗
ne2iθ(x,t,ζn), n = 1, 2.

The properties of the two-soliton solution are shown in Fig. 7.
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